CD47 is a direct target of SNAI1 and ZEB1 and its blockade activates the phagocytosis of breast cancer cells undergoing EMT

We report that CD47 was upregulated in different EMT-activated human breast cancer cells versus epithelial MCF7 cells. Overexpression of SNAI1 or ZEB1 in epithelial MCF7 cells activated EMT and upregulated CD47 while siRNA-mediated targeting of SNAI1 or ZEB1 in mesenchymal MDA-MB-231 cells reversed...

Full description

Bibliographic Details
Main Authors: Muhammad Zaeem Noman, Kris Van Moer, Vanessa Marani, Robert M. Gemmill, Léon-Charles Tranchevent, Francisco Azuaje, Arnaud Muller, Salem Chouaib, Jean Paul Thiery, Guy Berchem, Bassam Janji
Format: Article
Language:English
Published: Taylor & Francis Group 2018-04-01
Series:OncoImmunology
Subjects:
Online Access:http://dx.doi.org/10.1080/2162402X.2017.1345415
Description
Summary:We report that CD47 was upregulated in different EMT-activated human breast cancer cells versus epithelial MCF7 cells. Overexpression of SNAI1 or ZEB1 in epithelial MCF7 cells activated EMT and upregulated CD47 while siRNA-mediated targeting of SNAI1 or ZEB1 in mesenchymal MDA-MB-231 cells reversed EMT and strongly decreased CD47. Mechanistically, SNAI1 and ZEB1 upregulated CD47 by binding directly to E-boxes in the human CD47 promoter. TCGA and METABRIC data sets from breast cancer patients revealed that CD47 correlated with SNAI1 and Vimentin. At functional level, different EMT-activated breast cancer cells were less efficiently phagocytosed by macrophages vs. MCF7 cells. The phagocytosis of EMT-activated cells was rescued by using CD47 blocking antibody or by genetic targeting of SNAI1, ZEB1 or CD47. These results provide a rationale for an innovative preclinical combination immunotherapy based on PD-1/PD-L1 and CD47 blockade along with EMT inhibitors in patients with highly aggressive, mesenchymal, and metastatic breast cancer.
ISSN:2162-402X