Effect of Varying Proportions of Lignin and Cellulose Supplements on Immune Function and Lymphoid Organs of Layer Poultry (Gallus gallus)

To determine the benefits of different types or proportions of insoluble fiber components on growth and immunity, 4-week-old commercial layer pullets were fed supplements containing different proportions of purified lignin and cellulose or a commercial lignocellulose supplement. The 64 Hy-Line Brown...

Full description

Bibliographic Details
Main Authors: Sherzad M. Hussein, Theresa L. Frankel
Format: Article
Language:English
Published: Japan Poultry Science Association 2019-01-01
Series:The Journal of Poultry Science
Subjects:
Online Access:https://www.jstage.jst.go.jp/article/jpsa/56/1/56_0180032/_html/-char/en
Description
Summary:To determine the benefits of different types or proportions of insoluble fiber components on growth and immunity, 4-week-old commercial layer pullets were fed supplements containing different proportions of purified lignin and cellulose or a commercial lignocellulose supplement. The 64 Hy-Line Brown pullets were provided basal diets supplemented with 1 g fiber per 100 g diet. The supplements included a commercial lignocellulose, Arbocel® RC fine (group A) with cellulose to lignin ratio of approximately 3:1, cellulose (group Ce), a 3:1 mixture of cellulose: lignin (group Ce3Lig1), and a 2:1 mixture of cellulose: lignin (group Ce2Lig1). After 3 weeks, innate immune function was measured in terms of heterophil phagocytosis and oxidative burst (n=8). After 4 weeks, ex vivo stimulated lymphocyte proliferation was determined for assessment of cell-mediated immune function (n=7). All pullets were killed at 9 weeks of age and lymphoid organs were weighed (n=16) and small intestinal Peyer's patches (PP) were measured (n=8). Pullets in both A and Ce3Lig1 groups had heavier (P<0.05) body and bursa of Fabricius weights. The number of PP in group A was higher (P<0.05) than in group Ce. The percentage of heterophil phagocytosis in A and Ce3Lig1 groups were higher (P<0.05) than in group Ce, and oxidative burst of group A was higher (P<0.05) than that of group Ce. Addition of 1% Arbocel or 1% Ce3Lig1 to the diet of layer pullets from 4 to 9 weeks of age significantly improved their growth and innate immune function compared to group Ce. This suggests that lignin either modulates the effect of cellulose or has specific mechanisms of action in the gut that improves growth and immunity. The proportion of lignin to cellulose may also be important for growth and immune function.
ISSN:1346-7395
1349-0486