Summary: | The methanol-to-hydrocarbons (MTH) process is a very advantageous way to upgrade methanol to more valuable commodity chemicals such as light alkenes and gasoline. There is general agreement that, at steady state, the process operates via a dual cycle “hydrocarbon pool” mechanism. This mechanism defines a minimum number of reactants, intermediates, and products that must be present for the reaction to occur. In this paper, we calculate (by three independent methods) the volume required for a range of compounds that must be present in a working catalyst. These are compared to the available volume in a range of zeolites that have been used, or tested, for MTH. We show that this straightforward comparison provides a means to rationalize the product slate and the deactivation pathways in zeotype materials used for the MTH reaction.
|