Nonexistence of global solutions of fractional diffusion equation with time-space nonlocal source

Abstract We prove the nonexistence of solutions of the fractional diffusion equation with time-space nonlocal source u t + ( − Δ ) β 2 u = ( 1 + | x | ) γ ∫ 0 t ( t − s ) α − 1 | u | p ∥ ν 1 q ( x ) u ∥ q r d s $$\begin{aligned} u_{t} + (-\Delta )^{\frac{\beta }{2}} u =\bigl(1+ \vert x \vert \bigr)^...

Full description

Bibliographic Details
Main Authors: Abderrazak Nabti, Ahmed Alsaedi, Mokhtar Kirane, Bashir Ahmad
Format: Article
Language:English
Published: SpringerOpen 2020-11-01
Series:Advances in Difference Equations
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13662-020-03083-0
_version_ 1818211903412895744
author Abderrazak Nabti
Ahmed Alsaedi
Mokhtar Kirane
Bashir Ahmad
author_facet Abderrazak Nabti
Ahmed Alsaedi
Mokhtar Kirane
Bashir Ahmad
author_sort Abderrazak Nabti
collection DOAJ
description Abstract We prove the nonexistence of solutions of the fractional diffusion equation with time-space nonlocal source u t + ( − Δ ) β 2 u = ( 1 + | x | ) γ ∫ 0 t ( t − s ) α − 1 | u | p ∥ ν 1 q ( x ) u ∥ q r d s $$\begin{aligned} u_{t} + (-\Delta )^{\frac{\beta }{2}} u =\bigl(1+ \vert x \vert \bigr)^{ \gamma } \int _{0}^{t} (t-s)^{\alpha -1} \vert u \vert ^{p} \bigl\Vert \nu ^{ \frac{1}{q}}(x) u \bigr\Vert _{q}^{r} \,ds \end{aligned}$$ for ( x , t ) ∈ R N × ( 0 , ∞ ) $(x,t) \in \mathbb{R}^{N}\times (0,\infty )$ with initial data u ( x , 0 ) = u 0 ( x ) ∈ L loc 1 ( R N ) $u(x,0)=u_{0}(x) \in L^{1}_{\mathrm{loc}}(\mathbb{R}^{N})$ , where p , q , r > 1 $p,q,r>1$ , q ( p + r ) > q + r $q(p+r)>q+r$ , 0 < γ ≤ 2 $0<\gamma \leq 2 $ , 0 < α < 1 $0<\alpha <1$ , 0 < β ≤ 2 $0<\beta \leq 2$ , ( − Δ ) β 2 $(-\Delta )^{\frac{\beta }{2}}$ stands for the fractional Laplacian operator of order β, the weight function ν ( x ) $\nu (x)$ is positive and singular at the origin, and ∥ ⋅ ∥ q $\Vert \cdot \Vert _{q}$ is the norm of L q $L^{q}$ space.
first_indexed 2024-12-12T05:39:54Z
format Article
id doaj.art-3438801b2df641a092ffae9e3e04a270
institution Directory Open Access Journal
issn 1687-1847
language English
last_indexed 2024-12-12T05:39:54Z
publishDate 2020-11-01
publisher SpringerOpen
record_format Article
series Advances in Difference Equations
spelling doaj.art-3438801b2df641a092ffae9e3e04a2702022-12-22T00:35:58ZengSpringerOpenAdvances in Difference Equations1687-18472020-11-012020111010.1186/s13662-020-03083-0Nonexistence of global solutions of fractional diffusion equation with time-space nonlocal sourceAbderrazak Nabti0Ahmed Alsaedi1Mokhtar Kirane2Bashir Ahmad3Laboratory of Mathematics and Informatics and Systems, University of Larbi TebessiNAAM, Nonlinear Analysis and Applied Mathematics Research Group, Faculty of Sciences, King Abdulaziz UniversityNAAM, Nonlinear Analysis and Applied Mathematics Research Group, Faculty of Sciences, King Abdulaziz UniversityNAAM, Nonlinear Analysis and Applied Mathematics Research Group, Faculty of Sciences, King Abdulaziz UniversityAbstract We prove the nonexistence of solutions of the fractional diffusion equation with time-space nonlocal source u t + ( − Δ ) β 2 u = ( 1 + | x | ) γ ∫ 0 t ( t − s ) α − 1 | u | p ∥ ν 1 q ( x ) u ∥ q r d s $$\begin{aligned} u_{t} + (-\Delta )^{\frac{\beta }{2}} u =\bigl(1+ \vert x \vert \bigr)^{ \gamma } \int _{0}^{t} (t-s)^{\alpha -1} \vert u \vert ^{p} \bigl\Vert \nu ^{ \frac{1}{q}}(x) u \bigr\Vert _{q}^{r} \,ds \end{aligned}$$ for ( x , t ) ∈ R N × ( 0 , ∞ ) $(x,t) \in \mathbb{R}^{N}\times (0,\infty )$ with initial data u ( x , 0 ) = u 0 ( x ) ∈ L loc 1 ( R N ) $u(x,0)=u_{0}(x) \in L^{1}_{\mathrm{loc}}(\mathbb{R}^{N})$ , where p , q , r > 1 $p,q,r>1$ , q ( p + r ) > q + r $q(p+r)>q+r$ , 0 < γ ≤ 2 $0<\gamma \leq 2 $ , 0 < α < 1 $0<\alpha <1$ , 0 < β ≤ 2 $0<\beta \leq 2$ , ( − Δ ) β 2 $(-\Delta )^{\frac{\beta }{2}}$ stands for the fractional Laplacian operator of order β, the weight function ν ( x ) $\nu (x)$ is positive and singular at the origin, and ∥ ⋅ ∥ q $\Vert \cdot \Vert _{q}$ is the norm of L q $L^{q}$ space.http://link.springer.com/article/10.1186/s13662-020-03083-0Nonlocal sourceTest functionNonexistence of global solution
spellingShingle Abderrazak Nabti
Ahmed Alsaedi
Mokhtar Kirane
Bashir Ahmad
Nonexistence of global solutions of fractional diffusion equation with time-space nonlocal source
Advances in Difference Equations
Nonlocal source
Test function
Nonexistence of global solution
title Nonexistence of global solutions of fractional diffusion equation with time-space nonlocal source
title_full Nonexistence of global solutions of fractional diffusion equation with time-space nonlocal source
title_fullStr Nonexistence of global solutions of fractional diffusion equation with time-space nonlocal source
title_full_unstemmed Nonexistence of global solutions of fractional diffusion equation with time-space nonlocal source
title_short Nonexistence of global solutions of fractional diffusion equation with time-space nonlocal source
title_sort nonexistence of global solutions of fractional diffusion equation with time space nonlocal source
topic Nonlocal source
Test function
Nonexistence of global solution
url http://link.springer.com/article/10.1186/s13662-020-03083-0
work_keys_str_mv AT abderrazaknabti nonexistenceofglobalsolutionsoffractionaldiffusionequationwithtimespacenonlocalsource
AT ahmedalsaedi nonexistenceofglobalsolutionsoffractionaldiffusionequationwithtimespacenonlocalsource
AT mokhtarkirane nonexistenceofglobalsolutionsoffractionaldiffusionequationwithtimespacenonlocalsource
AT bashirahmad nonexistenceofglobalsolutionsoffractionaldiffusionequationwithtimespacenonlocalsource