Field-Theoretic Simulations for Block Copolymer Melts Using the Partial Saddle-Point Approximation

Field-theoretic simulations (FTS) provide an efficient technique for investigating fluctuation effects in block copolymer melts with numerous advantages over traditional particle-based simulations. For systems involving two components (i.e., A and B), the field-based Hamiltonian, <inline-formula&...

Full description

Bibliographic Details
Main Authors: Mark W. Matsen, Thomas M. Beardsley
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/13/15/2437
Description
Summary:Field-theoretic simulations (FTS) provide an efficient technique for investigating fluctuation effects in block copolymer melts with numerous advantages over traditional particle-based simulations. For systems involving two components (i.e., A and B), the field-based Hamiltonian, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mi>f</mi></msub><mrow><mo stretchy="false">[</mo><msub><mi>W</mi><mo>−</mo></msub><mo>,</mo><msub><mi>W</mi><mo>+</mo></msub><mo stretchy="false">]</mo></mrow></mrow></semantics></math></inline-formula>, depends on a composition field, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>W</mi><mo>−</mo></msub><mrow><mo stretchy="false">(</mo><mi mathvariant="bold">r</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, that controls the segregation of the unlike components and a pressure field, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>W</mi><mo>+</mo></msub><mrow><mo stretchy="false">(</mo><mi mathvariant="bold">r</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, that enforces incompressibility. This review introduces researchers to a promising variant of FTS, in which <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>W</mi><mo>−</mo></msub><mrow><mo stretchy="false">(</mo><mi mathvariant="bold">r</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> fluctuates while <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>W</mi><mo>+</mo></msub><mrow><mo stretchy="false">(</mo><mi mathvariant="bold">r</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> tracks its mean-field value. The method is described in detail for melts of AB diblock copolymer, covering its theoretical foundation through to its numerical implementation. We then illustrate its application for neat AB diblock copolymer melts, as well as ternary blends of AB diblock copolymer with its A- and B-type parent homopolymers. The review concludes by discussing the future outlook. To help researchers adopt the method, open-source code is provided that can be run on either central processing units (CPUs) or graphics processing units (GPUs).
ISSN:2073-4360