Field-Theoretic Simulations for Block Copolymer Melts Using the Partial Saddle-Point Approximation

Field-theoretic simulations (FTS) provide an efficient technique for investigating fluctuation effects in block copolymer melts with numerous advantages over traditional particle-based simulations. For systems involving two components (i.e., A and B), the field-based Hamiltonian, <inline-formula&...

Full description

Bibliographic Details
Main Authors: Mark W. Matsen, Thomas M. Beardsley
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/13/15/2437
_version_ 1797525237567324160
author Mark W. Matsen
Thomas M. Beardsley
author_facet Mark W. Matsen
Thomas M. Beardsley
author_sort Mark W. Matsen
collection DOAJ
description Field-theoretic simulations (FTS) provide an efficient technique for investigating fluctuation effects in block copolymer melts with numerous advantages over traditional particle-based simulations. For systems involving two components (i.e., A and B), the field-based Hamiltonian, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mi>f</mi></msub><mrow><mo stretchy="false">[</mo><msub><mi>W</mi><mo>−</mo></msub><mo>,</mo><msub><mi>W</mi><mo>+</mo></msub><mo stretchy="false">]</mo></mrow></mrow></semantics></math></inline-formula>, depends on a composition field, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>W</mi><mo>−</mo></msub><mrow><mo stretchy="false">(</mo><mi mathvariant="bold">r</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, that controls the segregation of the unlike components and a pressure field, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>W</mi><mo>+</mo></msub><mrow><mo stretchy="false">(</mo><mi mathvariant="bold">r</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, that enforces incompressibility. This review introduces researchers to a promising variant of FTS, in which <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>W</mi><mo>−</mo></msub><mrow><mo stretchy="false">(</mo><mi mathvariant="bold">r</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> fluctuates while <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>W</mi><mo>+</mo></msub><mrow><mo stretchy="false">(</mo><mi mathvariant="bold">r</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> tracks its mean-field value. The method is described in detail for melts of AB diblock copolymer, covering its theoretical foundation through to its numerical implementation. We then illustrate its application for neat AB diblock copolymer melts, as well as ternary blends of AB diblock copolymer with its A- and B-type parent homopolymers. The review concludes by discussing the future outlook. To help researchers adopt the method, open-source code is provided that can be run on either central processing units (CPUs) or graphics processing units (GPUs).
first_indexed 2024-03-10T09:09:55Z
format Article
id doaj.art-3440901b272246b0867fdc94d113e98a
institution Directory Open Access Journal
issn 2073-4360
language English
last_indexed 2024-03-10T09:09:55Z
publishDate 2021-07-01
publisher MDPI AG
record_format Article
series Polymers
spelling doaj.art-3440901b272246b0867fdc94d113e98a2023-11-22T06:02:54ZengMDPI AGPolymers2073-43602021-07-011315243710.3390/polym13152437Field-Theoretic Simulations for Block Copolymer Melts Using the Partial Saddle-Point ApproximationMark W. Matsen0Thomas M. Beardsley1Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, CanadaWaterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, CanadaField-theoretic simulations (FTS) provide an efficient technique for investigating fluctuation effects in block copolymer melts with numerous advantages over traditional particle-based simulations. For systems involving two components (i.e., A and B), the field-based Hamiltonian, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mi>f</mi></msub><mrow><mo stretchy="false">[</mo><msub><mi>W</mi><mo>−</mo></msub><mo>,</mo><msub><mi>W</mi><mo>+</mo></msub><mo stretchy="false">]</mo></mrow></mrow></semantics></math></inline-formula>, depends on a composition field, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>W</mi><mo>−</mo></msub><mrow><mo stretchy="false">(</mo><mi mathvariant="bold">r</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, that controls the segregation of the unlike components and a pressure field, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>W</mi><mo>+</mo></msub><mrow><mo stretchy="false">(</mo><mi mathvariant="bold">r</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, that enforces incompressibility. This review introduces researchers to a promising variant of FTS, in which <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>W</mi><mo>−</mo></msub><mrow><mo stretchy="false">(</mo><mi mathvariant="bold">r</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> fluctuates while <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>W</mi><mo>+</mo></msub><mrow><mo stretchy="false">(</mo><mi mathvariant="bold">r</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> tracks its mean-field value. The method is described in detail for melts of AB diblock copolymer, covering its theoretical foundation through to its numerical implementation. We then illustrate its application for neat AB diblock copolymer melts, as well as ternary blends of AB diblock copolymer with its A- and B-type parent homopolymers. The review concludes by discussing the future outlook. To help researchers adopt the method, open-source code is provided that can be run on either central processing units (CPUs) or graphics processing units (GPUs).https://www.mdpi.com/2073-4360/13/15/2437block copolymer meltsfield-theoretic simulationsmolecular self-assemblyphase diagramsorder-disorder transitionsgyroid phase
spellingShingle Mark W. Matsen
Thomas M. Beardsley
Field-Theoretic Simulations for Block Copolymer Melts Using the Partial Saddle-Point Approximation
Polymers
block copolymer melts
field-theoretic simulations
molecular self-assembly
phase diagrams
order-disorder transitions
gyroid phase
title Field-Theoretic Simulations for Block Copolymer Melts Using the Partial Saddle-Point Approximation
title_full Field-Theoretic Simulations for Block Copolymer Melts Using the Partial Saddle-Point Approximation
title_fullStr Field-Theoretic Simulations for Block Copolymer Melts Using the Partial Saddle-Point Approximation
title_full_unstemmed Field-Theoretic Simulations for Block Copolymer Melts Using the Partial Saddle-Point Approximation
title_short Field-Theoretic Simulations for Block Copolymer Melts Using the Partial Saddle-Point Approximation
title_sort field theoretic simulations for block copolymer melts using the partial saddle point approximation
topic block copolymer melts
field-theoretic simulations
molecular self-assembly
phase diagrams
order-disorder transitions
gyroid phase
url https://www.mdpi.com/2073-4360/13/15/2437
work_keys_str_mv AT markwmatsen fieldtheoreticsimulationsforblockcopolymermeltsusingthepartialsaddlepointapproximation
AT thomasmbeardsley fieldtheoreticsimulationsforblockcopolymermeltsusingthepartialsaddlepointapproximation