Flatness-Based Control for the Maximum Power Point Tracking in a Photovoltaic System
Solar energy harvesting using Photovoltaic (PV) systems is one of the most popular sources of renewable energy, however the main drawback of PV systems is their low conversion efficiency. An optimal system operation requires an efficient tracking of the Maximum Power Point (MPP), which represents th...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-05-01
|
Series: | Energies |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1073/12/10/1843 |
_version_ | 1817990527848546304 |
---|---|
author | Leopoldo Gil-Antonio Belem Saldivar Otniel Portillo-Rodríguez Juan Carlos Ávila-Vilchis Pánfilo Raymundo Martínez-Rodríguez Rigoberto Martínez-Méndez |
author_facet | Leopoldo Gil-Antonio Belem Saldivar Otniel Portillo-Rodríguez Juan Carlos Ávila-Vilchis Pánfilo Raymundo Martínez-Rodríguez Rigoberto Martínez-Méndez |
author_sort | Leopoldo Gil-Antonio |
collection | DOAJ |
description | Solar energy harvesting using Photovoltaic (PV) systems is one of the most popular sources of renewable energy, however the main drawback of PV systems is their low conversion efficiency. An optimal system operation requires an efficient tracking of the Maximum Power Point (MPP), which represents the maximum energy that can be extracted from the PV panel. This paper presents a novel control approach for the Maximum Power Point Tracking (MPPT) based on the differential flatness property of the Boost converter, which is one of the most used converters in PV systems. The underlying idea of the proposed control approach is to use the classical flatness-based trajectory tracking control where a reference voltage will be defined in terms of the maximum power provided by the PV panel. The effectiveness of the proposed controller is assessed through numerical simulations and experimental tests. The results show that the controller based on differential flatness is capable of converging in less than 0.15 s and, compared with other MPPT techniques, such as Incremental Conductance and Perturb and Observe, it improves the response against sudden changes in load or weather conditions, reducing the ringing in the output of the system. Based on the results, it can be inferred that the new flatness-based controller represents an alternative to improve the MPPT in PV systems, especially when they are subject to sudden load or weather changes. |
first_indexed | 2024-04-14T01:00:22Z |
format | Article |
id | doaj.art-3444a5e6d2bc401799524c08194ded55 |
institution | Directory Open Access Journal |
issn | 1996-1073 |
language | English |
last_indexed | 2024-04-14T01:00:22Z |
publishDate | 2019-05-01 |
publisher | MDPI AG |
record_format | Article |
series | Energies |
spelling | doaj.art-3444a5e6d2bc401799524c08194ded552022-12-22T02:21:26ZengMDPI AGEnergies1996-10732019-05-011210184310.3390/en12101843en12101843Flatness-Based Control for the Maximum Power Point Tracking in a Photovoltaic SystemLeopoldo Gil-Antonio0Belem Saldivar1Otniel Portillo-Rodríguez2Juan Carlos Ávila-Vilchis3Pánfilo Raymundo Martínez-Rodríguez4Rigoberto Martínez-Méndez5Faculty of Engineering, Autonomous University of the State of Mexico, Instituto Literario No. 100 Oriente, Toluca 50130, Estado de México, MexicoFaculty of Engineering, Autonomous University of the State of Mexico, Instituto Literario No. 100 Oriente, Toluca 50130, Estado de México, MexicoFaculty of Engineering, Autonomous University of the State of Mexico, Instituto Literario No. 100 Oriente, Toluca 50130, Estado de México, MexicoFaculty of Engineering, Autonomous University of the State of Mexico, Instituto Literario No. 100 Oriente, Toluca 50130, Estado de México, MexicoSchool of Sciencies, UASLP, San Luis Potosi 78290, SLP, MexicoFaculty of Engineering, Autonomous University of the State of Mexico, Instituto Literario No. 100 Oriente, Toluca 50130, Estado de México, MexicoSolar energy harvesting using Photovoltaic (PV) systems is one of the most popular sources of renewable energy, however the main drawback of PV systems is their low conversion efficiency. An optimal system operation requires an efficient tracking of the Maximum Power Point (MPP), which represents the maximum energy that can be extracted from the PV panel. This paper presents a novel control approach for the Maximum Power Point Tracking (MPPT) based on the differential flatness property of the Boost converter, which is one of the most used converters in PV systems. The underlying idea of the proposed control approach is to use the classical flatness-based trajectory tracking control where a reference voltage will be defined in terms of the maximum power provided by the PV panel. The effectiveness of the proposed controller is assessed through numerical simulations and experimental tests. The results show that the controller based on differential flatness is capable of converging in less than 0.15 s and, compared with other MPPT techniques, such as Incremental Conductance and Perturb and Observe, it improves the response against sudden changes in load or weather conditions, reducing the ringing in the output of the system. Based on the results, it can be inferred that the new flatness-based controller represents an alternative to improve the MPPT in PV systems, especially when they are subject to sudden load or weather changes.https://www.mdpi.com/1996-1073/12/10/1843MPPTdifferential flatnessnonlinear control |
spellingShingle | Leopoldo Gil-Antonio Belem Saldivar Otniel Portillo-Rodríguez Juan Carlos Ávila-Vilchis Pánfilo Raymundo Martínez-Rodríguez Rigoberto Martínez-Méndez Flatness-Based Control for the Maximum Power Point Tracking in a Photovoltaic System Energies MPPT differential flatness nonlinear control |
title | Flatness-Based Control for the Maximum Power Point Tracking in a Photovoltaic System |
title_full | Flatness-Based Control for the Maximum Power Point Tracking in a Photovoltaic System |
title_fullStr | Flatness-Based Control for the Maximum Power Point Tracking in a Photovoltaic System |
title_full_unstemmed | Flatness-Based Control for the Maximum Power Point Tracking in a Photovoltaic System |
title_short | Flatness-Based Control for the Maximum Power Point Tracking in a Photovoltaic System |
title_sort | flatness based control for the maximum power point tracking in a photovoltaic system |
topic | MPPT differential flatness nonlinear control |
url | https://www.mdpi.com/1996-1073/12/10/1843 |
work_keys_str_mv | AT leopoldogilantonio flatnessbasedcontrolforthemaximumpowerpointtrackinginaphotovoltaicsystem AT belemsaldivar flatnessbasedcontrolforthemaximumpowerpointtrackinginaphotovoltaicsystem AT otnielportillorodriguez flatnessbasedcontrolforthemaximumpowerpointtrackinginaphotovoltaicsystem AT juancarlosavilavilchis flatnessbasedcontrolforthemaximumpowerpointtrackinginaphotovoltaicsystem AT panfiloraymundomartinezrodriguez flatnessbasedcontrolforthemaximumpowerpointtrackinginaphotovoltaicsystem AT rigobertomartinezmendez flatnessbasedcontrolforthemaximumpowerpointtrackinginaphotovoltaicsystem |