Analysis of scaling transformation group and explicit exact solutions of the population balance equation involving breakage and growth processes(一类群体平衡方程的尺度变换群分析及显式精确解)
研究了一类既存在增长过程又存在破损过程的群体平衡方程的精确解法。用尺度变换群分析法得到群体平衡方程的部分对称、群不变解和约化积分-常微分方程。用试探函数法探求约化积分-常微分方程,得到群体平衡方程的显式精确解,并分析了该显式精确解的动力学特性。所得群不变解能解释实体模型,显式精确解可检验数值解的正确性和精确度。...
Main Authors: | , |
---|---|
Format: | Article |
Language: | zho |
Published: |
Zhejiang University Press
2022-01-01
|
Series: | Zhejiang Daxue xuebao. Lixue ban |
Subjects: | |
Online Access: | https://doi.org/10.3785/j.issn.1008-9497.2022.01.005 |
_version_ | 1797235665268637696 |
---|---|
author | LINFubiao(林府标) ZHANGQianhong(张千宏) |
author_facet | LINFubiao(林府标) ZHANGQianhong(张千宏) |
author_sort | LINFubiao(林府标) |
collection | DOAJ |
description | 研究了一类既存在增长过程又存在破损过程的群体平衡方程的精确解法。用尺度变换群分析法得到群体平衡方程的部分对称、群不变解和约化积分-常微分方程。用试探函数法探求约化积分-常微分方程,得到群体平衡方程的显式精确解,并分析了该显式精确解的动力学特性。所得群不变解能解释实体模型,显式精确解可检验数值解的正确性和精确度。 |
first_indexed | 2024-04-24T16:51:34Z |
format | Article |
id | doaj.art-344d6558d78c45cd9353d0e3ccfb76e1 |
institution | Directory Open Access Journal |
issn | 1008-9497 |
language | zho |
last_indexed | 2024-04-24T16:51:34Z |
publishDate | 2022-01-01 |
publisher | Zhejiang University Press |
record_format | Article |
series | Zhejiang Daxue xuebao. Lixue ban |
spelling | doaj.art-344d6558d78c45cd9353d0e3ccfb76e12024-03-29T01:58:40ZzhoZhejiang University PressZhejiang Daxue xuebao. Lixue ban1008-94972022-01-01491364010.3785/j.issn.1008-9497.2022.01.005Analysis of scaling transformation group and explicit exact solutions of the population balance equation involving breakage and growth processes(一类群体平衡方程的尺度变换群分析及显式精确解)LINFubiao(林府标)0https://orcid.org/0000-0003-4529-4930ZHANGQianhong(张千宏)https://orcid.org/0000-0001-9553-5443School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang 550025, China(贵州财经大学 数统学院,贵州 贵阳 550025)研究了一类既存在增长过程又存在破损过程的群体平衡方程的精确解法。用尺度变换群分析法得到群体平衡方程的部分对称、群不变解和约化积分-常微分方程。用试探函数法探求约化积分-常微分方程,得到群体平衡方程的显式精确解,并分析了该显式精确解的动力学特性。所得群不变解能解释实体模型,显式精确解可检验数值解的正确性和精确度。https://doi.org/10.3785/j.issn.1008-9497.2022.01.005积分-偏微分方程群体平衡方程尺度变换群显式精确解 |
spellingShingle | LINFubiao(林府标) ZHANGQianhong(张千宏) Analysis of scaling transformation group and explicit exact solutions of the population balance equation involving breakage and growth processes(一类群体平衡方程的尺度变换群分析及显式精确解) Zhejiang Daxue xuebao. Lixue ban 积分-偏微分方程 群体平衡方程 尺度变换群 显式精确解 |
title | Analysis of scaling transformation group and explicit exact solutions of the population balance equation involving breakage and growth processes(一类群体平衡方程的尺度变换群分析及显式精确解) |
title_full | Analysis of scaling transformation group and explicit exact solutions of the population balance equation involving breakage and growth processes(一类群体平衡方程的尺度变换群分析及显式精确解) |
title_fullStr | Analysis of scaling transformation group and explicit exact solutions of the population balance equation involving breakage and growth processes(一类群体平衡方程的尺度变换群分析及显式精确解) |
title_full_unstemmed | Analysis of scaling transformation group and explicit exact solutions of the population balance equation involving breakage and growth processes(一类群体平衡方程的尺度变换群分析及显式精确解) |
title_short | Analysis of scaling transformation group and explicit exact solutions of the population balance equation involving breakage and growth processes(一类群体平衡方程的尺度变换群分析及显式精确解) |
title_sort | analysis of scaling transformation group and explicit exact solutions of the population balance equation involving breakage and growth processes 一类群体平衡方程的尺度变换群分析及显式精确解 |
topic | 积分-偏微分方程 群体平衡方程 尺度变换群 显式精确解 |
url | https://doi.org/10.3785/j.issn.1008-9497.2022.01.005 |
work_keys_str_mv | AT linfubiaolínfǔbiāo analysisofscalingtransformationgroupandexplicitexactsolutionsofthepopulationbalanceequationinvolvingbreakageandgrowthprocessesyīlèiqúntǐpínghéngfāngchéngdechǐdùbiànhuànqúnfēnxījíxiǎnshìjīngquèjiě AT zhangqianhongzhāngqiānhóng analysisofscalingtransformationgroupandexplicitexactsolutionsofthepopulationbalanceequationinvolvingbreakageandgrowthprocessesyīlèiqúntǐpínghéngfāngchéngdechǐdùbiànhuànqúnfēnxījíxiǎnshìjīngquèjiě |