Attribute Reduction in an Incomplete Interval-Valued Decision Information System

An incomplete interval-valued decision information system (IIVDIS) is a significant type of data decision table, which is ubiquitous in real life. Interval value is a form of knowledge representation, and it seems to be an embodiment of the uncertainty of research objects. In this paper, we focus on...

Full description

Bibliographic Details
Main Authors: Yiying Chen, Zhaowen Li, Gangqiang Zhang
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9406010/
_version_ 1818479690771333120
author Yiying Chen
Zhaowen Li
Gangqiang Zhang
author_facet Yiying Chen
Zhaowen Li
Gangqiang Zhang
author_sort Yiying Chen
collection DOAJ
description An incomplete interval-valued decision information system (IIVDIS) is a significant type of data decision table, which is ubiquitous in real life. Interval value is a form of knowledge representation, and it seems to be an embodiment of the uncertainty of research objects. In this paper, we focus on attribute reduction on the basis of a parameterized tolerance-based rough set model in an IIVDIS. Firstly, we give the similarity degree between information values on each attribute in an IIVDIS by considering incomplete information. Then, we present tolerance relations on the object set of an IIVDIS based on this similarity degree. Next, we define the rough approximations by means of the presented tolerance relation. Based on Kryszkiewicz&#x2019;s ideal, we introduce <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>-generalized decision and consider attribute reduction in an IIVDIS by means of this decision. Furthermore, we put forward the notions of <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>-information entropy, <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>-conditional information entropy and <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>-joint information entropy in an IIVDIS. And we prove that <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>-positive region reduction theorem, <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>-conditional entropy reduction theorem, <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>-dependency reduction theorem and <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>-generalized decision reduction theorem are equivalent to each other. Finally, we propose two attribute reduction methods in an IIVDIS by using entropy measurement and the rough approximations, and design the relevant algorithms. We carry out a series of numerical experiments to verify the effectiveness of the proposed algorithms. The experimental results show that proposed algorithms often choose fewer attributes and improve classification accuracies in most cases.
first_indexed 2024-12-10T11:14:06Z
format Article
id doaj.art-3457b4edd349469d987b0a105e5db086
institution Directory Open Access Journal
issn 2169-3536
language English
last_indexed 2024-12-10T11:14:06Z
publishDate 2021-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj.art-3457b4edd349469d987b0a105e5db0862022-12-22T01:51:18ZengIEEEIEEE Access2169-35362021-01-019645396455710.1109/ACCESS.2021.30737099406010Attribute Reduction in an Incomplete Interval-Valued Decision Information SystemYiying Chen0Zhaowen Li1https://orcid.org/0000-0002-4437-9214Gangqiang Zhang2https://orcid.org/0000-0001-5424-6389School of Mathematics and Statistics, Minnan Normal University, Zhangzhou, ChinaDepartment of Guangxi Education, Key Laboratory of Complex System Optimization and Big Data Processing, Yulin Normal University, Yulin, ChinaSchool of Artificial Iintelligence, Guangxi University for Nationalities, Nanning, ChinaAn incomplete interval-valued decision information system (IIVDIS) is a significant type of data decision table, which is ubiquitous in real life. Interval value is a form of knowledge representation, and it seems to be an embodiment of the uncertainty of research objects. In this paper, we focus on attribute reduction on the basis of a parameterized tolerance-based rough set model in an IIVDIS. Firstly, we give the similarity degree between information values on each attribute in an IIVDIS by considering incomplete information. Then, we present tolerance relations on the object set of an IIVDIS based on this similarity degree. Next, we define the rough approximations by means of the presented tolerance relation. Based on Kryszkiewicz&#x2019;s ideal, we introduce <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>-generalized decision and consider attribute reduction in an IIVDIS by means of this decision. Furthermore, we put forward the notions of <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>-information entropy, <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>-conditional information entropy and <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>-joint information entropy in an IIVDIS. And we prove that <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>-positive region reduction theorem, <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>-conditional entropy reduction theorem, <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>-dependency reduction theorem and <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>-generalized decision reduction theorem are equivalent to each other. Finally, we propose two attribute reduction methods in an IIVDIS by using entropy measurement and the rough approximations, and design the relevant algorithms. We carry out a series of numerical experiments to verify the effectiveness of the proposed algorithms. The experimental results show that proposed algorithms often choose fewer attributes and improve classification accuracies in most cases.https://ieeexplore.ieee.org/document/9406010/Attribute reductionIIVDISsimilarity degreerough set theory<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">α</italic>-generalized decision<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">α</italic>-dependence
spellingShingle Yiying Chen
Zhaowen Li
Gangqiang Zhang
Attribute Reduction in an Incomplete Interval-Valued Decision Information System
IEEE Access
Attribute reduction
IIVDIS
similarity degree
rough set theory
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">α</italic>-generalized decision
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">α</italic>-dependence
title Attribute Reduction in an Incomplete Interval-Valued Decision Information System
title_full Attribute Reduction in an Incomplete Interval-Valued Decision Information System
title_fullStr Attribute Reduction in an Incomplete Interval-Valued Decision Information System
title_full_unstemmed Attribute Reduction in an Incomplete Interval-Valued Decision Information System
title_short Attribute Reduction in an Incomplete Interval-Valued Decision Information System
title_sort attribute reduction in an incomplete interval valued decision information system
topic Attribute reduction
IIVDIS
similarity degree
rough set theory
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">α</italic>-generalized decision
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">α</italic>-dependence
url https://ieeexplore.ieee.org/document/9406010/
work_keys_str_mv AT yiyingchen attributereductioninanincompleteintervalvalueddecisioninformationsystem
AT zhaowenli attributereductioninanincompleteintervalvalueddecisioninformationsystem
AT gangqiangzhang attributereductioninanincompleteintervalvalueddecisioninformationsystem