Study on titanium dioxide nanoparticles as MALDI MS matrix for the determination of lipids in the brain

The structures of lipids are diverse, and thus, lipids show various biological functions. Systematic determination of lipids in organisms has always been a concern. In this paper, a methodology on the matrix-assisted laser desorption ionization mass spectrometry (MALDI MS), with titanium dioxide nan...

Full description

Bibliographic Details
Main Authors: Peng Congnan, Zhang Qian, Liu Jian-an, Wang Zhen-peng, Zhao Zhen-wen, Kang Ning, Chen Yuxin, Huo Qing
Format: Article
Language:English
Published: De Gruyter 2021-11-01
Series:Green Processing and Synthesis
Subjects:
Online Access:https://doi.org/10.1515/gps-2021-0056
Description
Summary:The structures of lipids are diverse, and thus, lipids show various biological functions. Systematic determination of lipids in organisms has always been a concern. In this paper, a methodology on the matrix-assisted laser desorption ionization mass spectrometry (MALDI MS), with titanium dioxide nanoparticles (TiO2 NPs) as the matrix, was studied for lipid determination. The results showed that the following conditions were preferable in the determination of small-molecule lipids (such as hypoxanthine, guanosine, uridine, and cytidine), lipid standards (such as GC, GM, TG, phosphatidylethanolamine, phosphatidylcholine, and ceramide), and mixed lipids (extracted from brain homogenate with methanol alone and with the B&D method): TiO2 NPs as the matrix, absolute ethanol as the solvent, 1 mg of TiO2 NPs dispersed in 1 mL of absolute ethanol as the matrix solution, NaCl as the ionization reagent, and positive mass spectrometry (MS) as the mode. Modified TiO2 NP as a new matrix for MALDI MS will be a future research direction; in addition, the characteristics of TiO2 NPs make it a potential matrix for imaging MS.
ISSN:2191-9550