Iterative integral parameter identification of a respiratory mechanics model

<p>Abstract</p> <p>Background</p> <p>Patient-specific respiratory mechanics models can support the evaluation of optimal lung protective ventilator settings during ventilation therapy. Clinical application requires that the individual’s model parameter values must be id...

Full description

Bibliographic Details
Main Authors: Schranz Christoph, Docherty Paul D, Chiew Yeong, Möller Knut, Chase J
Format: Article
Language:English
Published: BMC 2012-07-01
Series:BioMedical Engineering OnLine
Subjects:
Online Access:http://www.biomedical-engineering-online.com/content/11/1/38
_version_ 1819155347072352256
author Schranz Christoph
Docherty Paul D
Chiew Yeong
Möller Knut
Chase J
author_facet Schranz Christoph
Docherty Paul D
Chiew Yeong
Möller Knut
Chase J
author_sort Schranz Christoph
collection DOAJ
description <p>Abstract</p> <p>Background</p> <p>Patient-specific respiratory mechanics models can support the evaluation of optimal lung protective ventilator settings during ventilation therapy. Clinical application requires that the individual’s model parameter values must be identified with information available at the bedside. Multiple linear regression or gradient-based parameter identification methods are highly sensitive to noise and initial parameter estimates. Thus, they are difficult to apply at the bedside to support therapeutic decisions.</p> <p>Methods</p> <p>An iterative integral parameter identification method is applied to a second order respiratory mechanics model. The method is compared to the commonly used regression methods and error-mapping approaches using simulated and clinical data. The clinical potential of the method was evaluated on data from 13 Acute Respiratory Distress Syndrome (ARDS) patients.</p> <p>Results</p> <p>The iterative integral method converged to error minima 350 times faster than the Simplex Search Method using simulation data sets and 50 times faster using clinical data sets. Established regression methods reported erroneous results due to sensitivity to noise. In contrast, the iterative integral method was effective independent of initial parameter estimations, and converged successfully in each case tested.</p> <p>Conclusion</p> <p>These investigations reveal that the iterative integral method is beneficial with respect to computing time, operator independence and robustness, and thus applicable at the bedside for this clinical application.</p>
first_indexed 2024-12-22T15:35:32Z
format Article
id doaj.art-348d535f16c64de0804f564a8449f9cc
institution Directory Open Access Journal
issn 1475-925X
language English
last_indexed 2024-12-22T15:35:32Z
publishDate 2012-07-01
publisher BMC
record_format Article
series BioMedical Engineering OnLine
spelling doaj.art-348d535f16c64de0804f564a8449f9cc2022-12-21T18:21:16ZengBMCBioMedical Engineering OnLine1475-925X2012-07-011113810.1186/1475-925X-11-38Iterative integral parameter identification of a respiratory mechanics modelSchranz ChristophDocherty Paul DChiew YeongMöller KnutChase J<p>Abstract</p> <p>Background</p> <p>Patient-specific respiratory mechanics models can support the evaluation of optimal lung protective ventilator settings during ventilation therapy. Clinical application requires that the individual’s model parameter values must be identified with information available at the bedside. Multiple linear regression or gradient-based parameter identification methods are highly sensitive to noise and initial parameter estimates. Thus, they are difficult to apply at the bedside to support therapeutic decisions.</p> <p>Methods</p> <p>An iterative integral parameter identification method is applied to a second order respiratory mechanics model. The method is compared to the commonly used regression methods and error-mapping approaches using simulated and clinical data. The clinical potential of the method was evaluated on data from 13 Acute Respiratory Distress Syndrome (ARDS) patients.</p> <p>Results</p> <p>The iterative integral method converged to error minima 350 times faster than the Simplex Search Method using simulation data sets and 50 times faster using clinical data sets. Established regression methods reported erroneous results due to sensitivity to noise. In contrast, the iterative integral method was effective independent of initial parameter estimations, and converged successfully in each case tested.</p> <p>Conclusion</p> <p>These investigations reveal that the iterative integral method is beneficial with respect to computing time, operator independence and robustness, and thus applicable at the bedside for this clinical application.</p>http://www.biomedical-engineering-online.com/content/11/1/38Parameter identificationRespiratory mechanicsViscoelastic modelGlobal minimumRobustness
spellingShingle Schranz Christoph
Docherty Paul D
Chiew Yeong
Möller Knut
Chase J
Iterative integral parameter identification of a respiratory mechanics model
BioMedical Engineering OnLine
Parameter identification
Respiratory mechanics
Viscoelastic model
Global minimum
Robustness
title Iterative integral parameter identification of a respiratory mechanics model
title_full Iterative integral parameter identification of a respiratory mechanics model
title_fullStr Iterative integral parameter identification of a respiratory mechanics model
title_full_unstemmed Iterative integral parameter identification of a respiratory mechanics model
title_short Iterative integral parameter identification of a respiratory mechanics model
title_sort iterative integral parameter identification of a respiratory mechanics model
topic Parameter identification
Respiratory mechanics
Viscoelastic model
Global minimum
Robustness
url http://www.biomedical-engineering-online.com/content/11/1/38
work_keys_str_mv AT schranzchristoph iterativeintegralparameteridentificationofarespiratorymechanicsmodel
AT dochertypauld iterativeintegralparameteridentificationofarespiratorymechanicsmodel
AT chiewyeong iterativeintegralparameteridentificationofarespiratorymechanicsmodel
AT mollerknut iterativeintegralparameteridentificationofarespiratorymechanicsmodel
AT chasej iterativeintegralparameteridentificationofarespiratorymechanicsmodel