Regular Nanowire Formation on Fe-Based Metal Glass by Manipulation of Surface Waves

We report the formation of a sole long nanowire structure and the regular nanowire arrays inside a groove on the surface of Fe-based metallic glass upon irradiation of two temporally delayed femtosecond lasers with the identical linear polarization parallel and perpendicular to the groove, respectiv...

Full description

Bibliographic Details
Main Authors: Zhen Zhao, Chaoqun Xia, Jianjun Yang
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/11/9/2389
Description
Summary:We report the formation of a sole long nanowire structure and the regular nanowire arrays inside a groove on the surface of Fe-based metallic glass upon irradiation of two temporally delayed femtosecond lasers with the identical linear polarization parallel and perpendicular to the groove, respectively. The regular structure formation can be well observed within the delay time of 20 ps for a given total laser fluence of <i>F</i> = 30 mJ/cm<sup>2</sup> and within a total laser fluence range of <i>F</i> = 30–42 mJ/cm<sup>2</sup> for a given delay time of 5 ps. The structural features, including the unit width and distribution period, are measured on a one-hundred nanometer scale, much less than the incident laser wavelength of 800 nm. The degree of structure regularity sharply contrasts with traditional observations. To comprehensively understand such phenomena, we propose a new physical model by considering the spin angular momentum of surface plasmon and its enhanced inhomogeneous magnetization for the ferromagnetic metal. Therefore, an intensive TE polarized magnetic surface wave is excited to result in the nanometer-scaled energy fringes and the ablative troughs. The theory is further verified by the observation of nanowire structure disappearance at the larger time delays of two laser pulses.
ISSN:2079-4991