Microstructures and Macrosegregation of Al–Zn–Mg–Cu Alloy Billet Prepared by Uniform Direct Chill Casting

In this study, large-sized Al–Zn–Mg–Cu alloy billets were prepared by direct chill casting imposed with annular electromagnetic stirring and intercooling; a process named uniform direct chill casting. The effects of uniform direct chill casting on grain size and the alloying element distribution of...

Full description

Bibliographic Details
Main Authors: Li Zhou, Yajun Luo, Zhenlin Zhang, Min He, Yinao Xu, Yulei Zhao, Sheng Liu, Lijun Dong, Zhifeng Zhang
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/14/4/708
Description
Summary:In this study, large-sized Al–Zn–Mg–Cu alloy billets were prepared by direct chill casting imposed with annular electromagnetic stirring and intercooling; a process named uniform direct chill casting. The effects of uniform direct chill casting on grain size and the alloying element distribution of the billets were investigated and compared with those of the normal direct chill casting method. The results show that the microstructures were refined and the homogeneity of the alloying elements distribution was greatly improved by imposing the annular electromagnetic stirring and intercooling. In uniform direct chill casting, explosive nucleation can be triggered, originating from the mold wall and dendrite fragments for grain refinement. The effects of electromagnetic stirring on macrosegregation are discussed with consideration of the centrifugal force that drives the movement of melt from the central part towards the upper-periphery part, which could suppress the macrosegregation of alloying elements. The refined grain can reduce the permeability of the melt in the mushy zone that can restrain macrosegregation.
ISSN:1996-1944