Comparative Multicentric Evaluation of Inter-Observer Variability in Manual and Automatic Segmentation of Neuroblastic Tumors in Magnetic Resonance Images

Tumor segmentation is one of the key steps in imaging processing. The goals of this study were to assess the inter-observer variability in manual segmentation of neuroblastic tumors and to analyze whether the state-of-the-art deep learning architecture nnU-Net can provide a robust solution to detect...

Full description

Bibliographic Details
Main Authors: Diana Veiga-Canuto, Leonor Cerdà-Alberich, Cinta Sangüesa Nebot, Blanca Martínez de las Heras, Ulrike Pötschger, Michela Gabelloni, José Miguel Carot Sierra, Sabine Taschner-Mandl, Vanessa Düster, Adela Cañete, Ruth Ladenstein, Emanuele Neri, Luis Martí-Bonmatí
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Cancers
Subjects:
Online Access:https://www.mdpi.com/2072-6694/14/15/3648
_version_ 1797414438059376640
author Diana Veiga-Canuto
Leonor Cerdà-Alberich
Cinta Sangüesa Nebot
Blanca Martínez de las Heras
Ulrike Pötschger
Michela Gabelloni
José Miguel Carot Sierra
Sabine Taschner-Mandl
Vanessa Düster
Adela Cañete
Ruth Ladenstein
Emanuele Neri
Luis Martí-Bonmatí
author_facet Diana Veiga-Canuto
Leonor Cerdà-Alberich
Cinta Sangüesa Nebot
Blanca Martínez de las Heras
Ulrike Pötschger
Michela Gabelloni
José Miguel Carot Sierra
Sabine Taschner-Mandl
Vanessa Düster
Adela Cañete
Ruth Ladenstein
Emanuele Neri
Luis Martí-Bonmatí
author_sort Diana Veiga-Canuto
collection DOAJ
description Tumor segmentation is one of the key steps in imaging processing. The goals of this study were to assess the inter-observer variability in manual segmentation of neuroblastic tumors and to analyze whether the state-of-the-art deep learning architecture nnU-Net can provide a robust solution to detect and segment tumors on MR images. A retrospective multicenter study of 132 patients with neuroblastic tumors was performed. Dice Similarity Coefficient (DSC) and Area Under the Receiver Operating Characteristic Curve (AUC ROC) were used to compare segmentation sets. Two more metrics were elaborated to understand the direction of the errors: the modified version of False Positive (FPRm) and False Negative (FNR) rates. Two radiologists manually segmented 46 tumors and a comparative study was performed. nnU-Net was trained-tuned with 106 cases divided into five balanced folds to perform cross-validation. The five resulting models were used as an ensemble solution to measure training (n = 106) and validation (n = 26) performance, independently. The time needed by the model to automatically segment 20 cases was compared to the time required for manual segmentation. The median DSC for manual segmentation sets was 0.969 (±0.032 IQR). The median DSC for the automatic tool was 0.965 (±0.018 IQR). The automatic segmentation model achieved a better performance regarding the FPRm. MR images segmentation variability is similar between radiologists and nnU-Net. Time leverage when using the automatic model with posterior visual validation and manual adjustment corresponds to 92.8%.
first_indexed 2024-03-09T05:33:01Z
format Article
id doaj.art-34a8e06a1e134411af1ea02f0849ec52
institution Directory Open Access Journal
issn 2072-6694
language English
last_indexed 2024-03-09T05:33:01Z
publishDate 2022-07-01
publisher MDPI AG
record_format Article
series Cancers
spelling doaj.art-34a8e06a1e134411af1ea02f0849ec522023-12-03T12:30:42ZengMDPI AGCancers2072-66942022-07-011415364810.3390/cancers14153648Comparative Multicentric Evaluation of Inter-Observer Variability in Manual and Automatic Segmentation of Neuroblastic Tumors in Magnetic Resonance ImagesDiana Veiga-Canuto0Leonor Cerdà-Alberich1Cinta Sangüesa Nebot2Blanca Martínez de las Heras3Ulrike Pötschger4Michela Gabelloni5José Miguel Carot Sierra6Sabine Taschner-Mandl7Vanessa Düster8Adela Cañete9Ruth Ladenstein10Emanuele Neri11Luis Martí-Bonmatí12Grupo de Investigación Biomédica en Imagen, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106 Torre A 7planta, 46026 Valencia, SpainGrupo de Investigación Biomédica en Imagen, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106 Torre A 7planta, 46026 Valencia, SpainÁrea Clínica de Imagen Médica, Hospital Universitario y Politécnico La Fe, Avenida Fernando Abril Martorell, 106 Torre A 7planta, 46026 Valencia, SpainUnidad de Oncohematología Pediátrica, Hospital Universitario y Politécnico La Fe, Avenida Fernando Abril Martorell, 106 Torre A 7planta, 46026 Valencia, SpainSt. Anna Children’s Cancer Research Institute, Zimmermannplatz 10, 1090 Vienna, AustriaAcademic Radiology, Department of Translational Research, University of Pisa, Via Roma, 67, 56126 Pisa, ItalyDepartamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, SpainSt. Anna Children’s Cancer Research Institute, Zimmermannplatz 10, 1090 Vienna, AustriaSt. Anna Children’s Cancer Research Institute, Zimmermannplatz 10, 1090 Vienna, AustriaUnidad de Oncohematología Pediátrica, Hospital Universitario y Politécnico La Fe, Avenida Fernando Abril Martorell, 106 Torre A 7planta, 46026 Valencia, SpainSt. Anna Children’s Cancer Research Institute, Zimmermannplatz 10, 1090 Vienna, AustriaAcademic Radiology, Department of Translational Research, University of Pisa, Via Roma, 67, 56126 Pisa, ItalyGrupo de Investigación Biomédica en Imagen, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106 Torre A 7planta, 46026 Valencia, SpainTumor segmentation is one of the key steps in imaging processing. The goals of this study were to assess the inter-observer variability in manual segmentation of neuroblastic tumors and to analyze whether the state-of-the-art deep learning architecture nnU-Net can provide a robust solution to detect and segment tumors on MR images. A retrospective multicenter study of 132 patients with neuroblastic tumors was performed. Dice Similarity Coefficient (DSC) and Area Under the Receiver Operating Characteristic Curve (AUC ROC) were used to compare segmentation sets. Two more metrics were elaborated to understand the direction of the errors: the modified version of False Positive (FPRm) and False Negative (FNR) rates. Two radiologists manually segmented 46 tumors and a comparative study was performed. nnU-Net was trained-tuned with 106 cases divided into five balanced folds to perform cross-validation. The five resulting models were used as an ensemble solution to measure training (n = 106) and validation (n = 26) performance, independently. The time needed by the model to automatically segment 20 cases was compared to the time required for manual segmentation. The median DSC for manual segmentation sets was 0.969 (±0.032 IQR). The median DSC for the automatic tool was 0.965 (±0.018 IQR). The automatic segmentation model achieved a better performance regarding the FPRm. MR images segmentation variability is similar between radiologists and nnU-Net. Time leverage when using the automatic model with posterior visual validation and manual adjustment corresponds to 92.8%.https://www.mdpi.com/2072-6694/14/15/3648tumor segmentationneuroblastic tumorsdeep learningmanual segmentationautomatic segmentationinter-observer variability
spellingShingle Diana Veiga-Canuto
Leonor Cerdà-Alberich
Cinta Sangüesa Nebot
Blanca Martínez de las Heras
Ulrike Pötschger
Michela Gabelloni
José Miguel Carot Sierra
Sabine Taschner-Mandl
Vanessa Düster
Adela Cañete
Ruth Ladenstein
Emanuele Neri
Luis Martí-Bonmatí
Comparative Multicentric Evaluation of Inter-Observer Variability in Manual and Automatic Segmentation of Neuroblastic Tumors in Magnetic Resonance Images
Cancers
tumor segmentation
neuroblastic tumors
deep learning
manual segmentation
automatic segmentation
inter-observer variability
title Comparative Multicentric Evaluation of Inter-Observer Variability in Manual and Automatic Segmentation of Neuroblastic Tumors in Magnetic Resonance Images
title_full Comparative Multicentric Evaluation of Inter-Observer Variability in Manual and Automatic Segmentation of Neuroblastic Tumors in Magnetic Resonance Images
title_fullStr Comparative Multicentric Evaluation of Inter-Observer Variability in Manual and Automatic Segmentation of Neuroblastic Tumors in Magnetic Resonance Images
title_full_unstemmed Comparative Multicentric Evaluation of Inter-Observer Variability in Manual and Automatic Segmentation of Neuroblastic Tumors in Magnetic Resonance Images
title_short Comparative Multicentric Evaluation of Inter-Observer Variability in Manual and Automatic Segmentation of Neuroblastic Tumors in Magnetic Resonance Images
title_sort comparative multicentric evaluation of inter observer variability in manual and automatic segmentation of neuroblastic tumors in magnetic resonance images
topic tumor segmentation
neuroblastic tumors
deep learning
manual segmentation
automatic segmentation
inter-observer variability
url https://www.mdpi.com/2072-6694/14/15/3648
work_keys_str_mv AT dianaveigacanuto comparativemulticentricevaluationofinterobservervariabilityinmanualandautomaticsegmentationofneuroblastictumorsinmagneticresonanceimages
AT leonorcerdaalberich comparativemulticentricevaluationofinterobservervariabilityinmanualandautomaticsegmentationofneuroblastictumorsinmagneticresonanceimages
AT cintasanguesanebot comparativemulticentricevaluationofinterobservervariabilityinmanualandautomaticsegmentationofneuroblastictumorsinmagneticresonanceimages
AT blancamartinezdelasheras comparativemulticentricevaluationofinterobservervariabilityinmanualandautomaticsegmentationofneuroblastictumorsinmagneticresonanceimages
AT ulrikepotschger comparativemulticentricevaluationofinterobservervariabilityinmanualandautomaticsegmentationofneuroblastictumorsinmagneticresonanceimages
AT michelagabelloni comparativemulticentricevaluationofinterobservervariabilityinmanualandautomaticsegmentationofneuroblastictumorsinmagneticresonanceimages
AT josemiguelcarotsierra comparativemulticentricevaluationofinterobservervariabilityinmanualandautomaticsegmentationofneuroblastictumorsinmagneticresonanceimages
AT sabinetaschnermandl comparativemulticentricevaluationofinterobservervariabilityinmanualandautomaticsegmentationofneuroblastictumorsinmagneticresonanceimages
AT vanessaduster comparativemulticentricevaluationofinterobservervariabilityinmanualandautomaticsegmentationofneuroblastictumorsinmagneticresonanceimages
AT adelacanete comparativemulticentricevaluationofinterobservervariabilityinmanualandautomaticsegmentationofneuroblastictumorsinmagneticresonanceimages
AT ruthladenstein comparativemulticentricevaluationofinterobservervariabilityinmanualandautomaticsegmentationofneuroblastictumorsinmagneticresonanceimages
AT emanueleneri comparativemulticentricevaluationofinterobservervariabilityinmanualandautomaticsegmentationofneuroblastictumorsinmagneticresonanceimages
AT luismartibonmati comparativemulticentricevaluationofinterobservervariabilityinmanualandautomaticsegmentationofneuroblastictumorsinmagneticresonanceimages