KuINins as a New Class of HIV-1 Inhibitors That Block Post-Integration DNA Repair

Integration of HIV-1 genomic cDNA results in the formation of single-strand breaks in cellular DNA, which must be repaired for efficient viral replication. Post-integration DNA repair mainly depends on the formation of the HIV-1 integrase complex with the Ku70 protein, which promotes DNA-PK assembly...

Full description

Bibliographic Details
Main Authors: Andrey Anisenko, Simon Galkin, Andrey A. Mikhaylov, Maria G. Khrenova, Yulia Agapkina, Sergey Korolev, Lidia Garkul, Vasilissa Shirokova, Viktoria A. Ikonnikova, Alexander Korlyukov, Pavel Dorovatovskii, Mikhail Baranov, Marina Gottikh
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/24/24/17354
Description
Summary:Integration of HIV-1 genomic cDNA results in the formation of single-strand breaks in cellular DNA, which must be repaired for efficient viral replication. Post-integration DNA repair mainly depends on the formation of the HIV-1 integrase complex with the Ku70 protein, which promotes DNA-PK assembly at sites of integration and its activation. Here, we have developed a first-class inhibitor of the integrase-Ku70 complex formation that inhibits HIV-1 replication in cell culture by acting at the stage of post-integration DNA repair. This inhibitor, named s17, does not affect the main cellular function of Ku70, namely its participation in the repair of double-strand DNA breaks through the non-homologous end-joining pathway. Using a molecular dynamics approach, we have constructed a model for the interaction of s17 with Ku70. According to this model, the interaction of two phenyl radicals of s17 with the L76 residue of Ku70 is important for this interaction. The requirement of two phenyl radicals in the structure of s17 for its inhibitory properties was confirmed using a set of s17 derivatives. We propose to stimulate compounds that inhibit post-integration repair by disrupting the integrase binding to Ku70 KuINins.
ISSN:1661-6596
1422-0067