On the Structure of the Mislin Genus of a Pullback

The notion of genus for finitely generated nilpotent groups was introduced by Mislin. Two finitely generated nilpotent groups Q and R belong to the same genus set <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="script">G</...

Full description

Bibliographic Details
Main Authors: Thandile Tonisi, Rugare Kwashira, Jules C. Mba
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/12/2672
_version_ 1827736567958994944
author Thandile Tonisi
Rugare Kwashira
Jules C. Mba
author_facet Thandile Tonisi
Rugare Kwashira
Jules C. Mba
author_sort Thandile Tonisi
collection DOAJ
description The notion of genus for finitely generated nilpotent groups was introduced by Mislin. Two finitely generated nilpotent groups Q and R belong to the same genus set <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="script">G</mi><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></semantics></math></inline-formula> if and only if the two groups are nonisomorphic, but for each prime <i>p</i>, their p-localizations <inline-formula><math display="inline"><semantics><msub><mi>Q</mi><mi>p</mi></msub></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><msub><mi>R</mi><mi>p</mi></msub></semantics></math></inline-formula> are isomorphic. Mislin and Hilton introduced the structure of a finite abelian group on the genus if the group <i>Q</i> has a finite commutator subgroup. In this study, we consider the class of finitely generated infinite nilpotent groups with a finite commutator subgroup. We construct a pullback <inline-formula><math display="inline"><semantics><msub><mi>H</mi><mi>t</mi></msub></semantics></math></inline-formula> from the <i>l</i>-equivalences <inline-formula><math display="inline"><semantics><mrow><msub><mi>H</mi><mi>i</mi></msub><mo>→</mo><mi>H</mi></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mrow><msub><mi>H</mi><mi>j</mi></msub><mo>→</mo><mi>H</mi></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><mi>t</mi><mo>≡</mo><mo>(</mo><mi>i</mi><mo>+</mo><mi>j</mi><mo>)</mo><mspace width="0.166667em"></mspace><mi>m</mi><mi>o</mi><mi>d</mi><mspace width="0.166667em"></mspace><mi>s</mi></mrow></semantics></math></inline-formula>, where <inline-formula><math display="inline"><semantics><mrow><mi>s</mi><mo>=</mo><mo>|</mo><mrow><mi mathvariant="script">G</mi><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>|</mo></mrow></semantics></math></inline-formula>, and compare its genus to that of <i>H</i>. Furthermore, we consider a pullback <i>L</i> of a direct product <inline-formula><math display="inline"><semantics><mrow><mi>G</mi><mo>×</mo><mi>K</mi></mrow></semantics></math></inline-formula> of groups in this class. Here, we prove results on the group <i>L</i> and prove that its genus is nontrivial.
first_indexed 2024-03-11T02:11:09Z
format Article
id doaj.art-34b57f0c6cf14376a07489c566b2f7a0
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-11T02:11:09Z
publishDate 2023-06-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-34b57f0c6cf14376a07489c566b2f7a02023-11-18T11:28:11ZengMDPI AGMathematics2227-73902023-06-011112267210.3390/math11122672On the Structure of the Mislin Genus of a PullbackThandile Tonisi0Rugare Kwashira1Jules C. Mba2Department of Mathematics, The University of the Witwatersrand, Johannesburg 2001, South AfricaDepartment of Mathematics, The University of the Witwatersrand, Johannesburg 2001, South AfricaSchool of Economics, University of Johannesburg, Johannesburg 2006, South AfricaThe notion of genus for finitely generated nilpotent groups was introduced by Mislin. Two finitely generated nilpotent groups Q and R belong to the same genus set <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="script">G</mi><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></semantics></math></inline-formula> if and only if the two groups are nonisomorphic, but for each prime <i>p</i>, their p-localizations <inline-formula><math display="inline"><semantics><msub><mi>Q</mi><mi>p</mi></msub></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><msub><mi>R</mi><mi>p</mi></msub></semantics></math></inline-formula> are isomorphic. Mislin and Hilton introduced the structure of a finite abelian group on the genus if the group <i>Q</i> has a finite commutator subgroup. In this study, we consider the class of finitely generated infinite nilpotent groups with a finite commutator subgroup. We construct a pullback <inline-formula><math display="inline"><semantics><msub><mi>H</mi><mi>t</mi></msub></semantics></math></inline-formula> from the <i>l</i>-equivalences <inline-formula><math display="inline"><semantics><mrow><msub><mi>H</mi><mi>i</mi></msub><mo>→</mo><mi>H</mi></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mrow><msub><mi>H</mi><mi>j</mi></msub><mo>→</mo><mi>H</mi></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><mi>t</mi><mo>≡</mo><mo>(</mo><mi>i</mi><mo>+</mo><mi>j</mi><mo>)</mo><mspace width="0.166667em"></mspace><mi>m</mi><mi>o</mi><mi>d</mi><mspace width="0.166667em"></mspace><mi>s</mi></mrow></semantics></math></inline-formula>, where <inline-formula><math display="inline"><semantics><mrow><mi>s</mi><mo>=</mo><mo>|</mo><mrow><mi mathvariant="script">G</mi><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>|</mo></mrow></semantics></math></inline-formula>, and compare its genus to that of <i>H</i>. Furthermore, we consider a pullback <i>L</i> of a direct product <inline-formula><math display="inline"><semantics><mrow><mi>G</mi><mo>×</mo><mi>K</mi></mrow></semantics></math></inline-formula> of groups in this class. Here, we prove results on the group <i>L</i> and prove that its genus is nontrivial.https://www.mdpi.com/2227-7390/11/12/2672mislin genusnoncancellationshort exact sequencepullback diagramlocalization
spellingShingle Thandile Tonisi
Rugare Kwashira
Jules C. Mba
On the Structure of the Mislin Genus of a Pullback
Mathematics
mislin genus
noncancellation
short exact sequence
pullback diagram
localization
title On the Structure of the Mislin Genus of a Pullback
title_full On the Structure of the Mislin Genus of a Pullback
title_fullStr On the Structure of the Mislin Genus of a Pullback
title_full_unstemmed On the Structure of the Mislin Genus of a Pullback
title_short On the Structure of the Mislin Genus of a Pullback
title_sort on the structure of the mislin genus of a pullback
topic mislin genus
noncancellation
short exact sequence
pullback diagram
localization
url https://www.mdpi.com/2227-7390/11/12/2672
work_keys_str_mv AT thandiletonisi onthestructureofthemislingenusofapullback
AT rugarekwashira onthestructureofthemislingenusofapullback
AT julescmba onthestructureofthemislingenusofapullback