Model construction and experimental research on end grinding force of SiCp/Al composites

Aiming at the problem that precision and efficient end grinding is required for the two-phase 3D reconstruction of SiCp/Al grinding layer by layer, an analytical model of end grinding force of SiCp/Al is established based on the grinding force of SiCp/Al grinding with a single abrasive particle, con...

Full description

Bibliographic Details
Main Authors: Guixin CAO, Zhiguo DONG, Zehua ZHANG, Zhangmin HOU
Format: Article
Language:zho
Published: Zhengzhou Research Institute for Abrasives & Grinding Co., Ltd. 2023-06-01
Series:Jin'gangshi yu moliao moju gongcheng
Subjects:
Online Access:http://www.jgszz.cn/article/doi/10.13394/j.cnki.jgszz.2022.0112
Description
Summary:Aiming at the problem that precision and efficient end grinding is required for the two-phase 3D reconstruction of SiCp/Al grinding layer by layer, an analytical model of end grinding force of SiCp/Al is established based on the grinding force of SiCp/Al grinding with a single abrasive particle, considering the chip deformation force, friction force and the breaking force of SiC particles. The effects of cutting speed, workpiece feed speed and axial grinding depth on the surface roughness were studied by experiments. The machining technology of SiCp/Al metallographic surface rapid grinding was also discussed. The results show that the overall average error between the analytical model of end grinding force and the experimental normal grinding force Fn is 12.98%, and that the overall average error of tangential grinding force Ft is 3.49%. The surface roughness decreases with the increase of cutting speed and increases with the increase of feed speed and axial grinding depth. The grinding time for obtaining a good metallographic surface is 600 s after 6 grinding times with a grinding tool of 13.0 μm grain size. The rapid grinding of SiCp/Al metallographic surface can be realized.
ISSN:1006-852X