Modulation of Atlantic salmon (Salmo salar) gut microbiota composition and predicted metabolic capacity by feeding diets with processed black soldier fly (Hermetia illucens) larvae meals and fractions
Abstract Background Black soldier fly (Hermetia illucens) is a promising insect species to use as a novel ingredient in fish feeds. Black soldier fly larvae consists of three major fractions, namely protein, lipid, and exoskeleton. These fractions contain bioactive compounds that can modulate the gu...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2022-01-01
|
Series: | Animal Microbiome |
Subjects: | |
Online Access: | https://doi.org/10.1186/s42523-021-00161-w |
_version_ | 1818752950063857664 |
---|---|
author | Pabodha Weththasinghe Sérgio D. C. Rocha Ove Øyås Leidy Lagos Jon Ø. Hansen Liv T. Mydland Margareth Øverland |
author_facet | Pabodha Weththasinghe Sérgio D. C. Rocha Ove Øyås Leidy Lagos Jon Ø. Hansen Liv T. Mydland Margareth Øverland |
author_sort | Pabodha Weththasinghe |
collection | DOAJ |
description | Abstract Background Black soldier fly (Hermetia illucens) is a promising insect species to use as a novel ingredient in fish feeds. Black soldier fly larvae consists of three major fractions, namely protein, lipid, and exoskeleton. These fractions contain bioactive compounds that can modulate the gut microbiota in fish such as antimicrobial peptides, lauric acid, and chitin. However, it is not certain how, or which fractions of black solider fly would affect gut microbiota in fish. In the present study, black soldier fly larvae were processed into three different meals (full-fat, defatted and de-chitinized) and two fractions (oil and exoskeleton), and included in diets for Atlantic salmon (Salmo salar). Atlantic salmon pre-smolts were fed with these diets in comparison with a commercial-like control diet for eight weeks to investigate the effects of insect meals and fractions on the composition and predicted metabolic capacity of gut microbiota. The gut microbiota was profiled by 16S rRNA gene sequencing, and the predicted metabolic capacities of gut microbiota were determined using genome-scale metabolic models. Results The inclusion of insect meals and fractions decreased abundance of Proteobacteria and increased abundance of Firmicutes in salmon gut. The diets that contained insect chitin, i.e., insect meals or exoskeleton diets, increased abundance of chitinolytic bacteria including lactic acid bacteria and Actinomyces in salmon gut, with fish fed full-fat meal diet showing the highest abundances. The diets that contained insect lipids, i.e., insect meals and oil diets enriched Bacillaceae in fish gut. The fish fed diets containing full-fat insect meal had a unique gut microbiota composition dominated by beneficial lactic acid bacteria and Actinomyces, and showed a predicted increase in mucin degradation compared to the other diets. Conclusions The present results showed that the dietary inclusion of insect meals and fractions can differently modulate the composition and predicted metabolic capacity of gut microbiota in Atlantic salmon pre-smolts. The use of full-fat black soldier fly larvae meal in diets for salmon is more favorable for beneficial modulation of gut microbiota than larvae processed by separation of lipid or exoskeleton fractions. |
first_indexed | 2024-12-18T04:59:36Z |
format | Article |
id | doaj.art-34e621d2afbf492091ed9e1814c630b2 |
institution | Directory Open Access Journal |
issn | 2524-4671 |
language | English |
last_indexed | 2024-12-18T04:59:36Z |
publishDate | 2022-01-01 |
publisher | BMC |
record_format | Article |
series | Animal Microbiome |
spelling | doaj.art-34e621d2afbf492091ed9e1814c630b22022-12-21T21:20:11ZengBMCAnimal Microbiome2524-46712022-01-014112110.1186/s42523-021-00161-wModulation of Atlantic salmon (Salmo salar) gut microbiota composition and predicted metabolic capacity by feeding diets with processed black soldier fly (Hermetia illucens) larvae meals and fractionsPabodha Weththasinghe0Sérgio D. C. Rocha1Ove Øyås2Leidy Lagos3Jon Ø. Hansen4Liv T. Mydland5Margareth Øverland6Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life SciencesDepartment of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life SciencesDepartment of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life SciencesDepartment of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life SciencesDepartment of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life SciencesDepartment of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life SciencesDepartment of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life SciencesAbstract Background Black soldier fly (Hermetia illucens) is a promising insect species to use as a novel ingredient in fish feeds. Black soldier fly larvae consists of three major fractions, namely protein, lipid, and exoskeleton. These fractions contain bioactive compounds that can modulate the gut microbiota in fish such as antimicrobial peptides, lauric acid, and chitin. However, it is not certain how, or which fractions of black solider fly would affect gut microbiota in fish. In the present study, black soldier fly larvae were processed into three different meals (full-fat, defatted and de-chitinized) and two fractions (oil and exoskeleton), and included in diets for Atlantic salmon (Salmo salar). Atlantic salmon pre-smolts were fed with these diets in comparison with a commercial-like control diet for eight weeks to investigate the effects of insect meals and fractions on the composition and predicted metabolic capacity of gut microbiota. The gut microbiota was profiled by 16S rRNA gene sequencing, and the predicted metabolic capacities of gut microbiota were determined using genome-scale metabolic models. Results The inclusion of insect meals and fractions decreased abundance of Proteobacteria and increased abundance of Firmicutes in salmon gut. The diets that contained insect chitin, i.e., insect meals or exoskeleton diets, increased abundance of chitinolytic bacteria including lactic acid bacteria and Actinomyces in salmon gut, with fish fed full-fat meal diet showing the highest abundances. The diets that contained insect lipids, i.e., insect meals and oil diets enriched Bacillaceae in fish gut. The fish fed diets containing full-fat insect meal had a unique gut microbiota composition dominated by beneficial lactic acid bacteria and Actinomyces, and showed a predicted increase in mucin degradation compared to the other diets. Conclusions The present results showed that the dietary inclusion of insect meals and fractions can differently modulate the composition and predicted metabolic capacity of gut microbiota in Atlantic salmon pre-smolts. The use of full-fat black soldier fly larvae meal in diets for salmon is more favorable for beneficial modulation of gut microbiota than larvae processed by separation of lipid or exoskeleton fractions.https://doi.org/10.1186/s42523-021-00161-wBlack soldier flyAtlantic salmonGut microbiotaPredicted microbial metabolic capacityFull-fat insect mealDefatted insect meal |
spellingShingle | Pabodha Weththasinghe Sérgio D. C. Rocha Ove Øyås Leidy Lagos Jon Ø. Hansen Liv T. Mydland Margareth Øverland Modulation of Atlantic salmon (Salmo salar) gut microbiota composition and predicted metabolic capacity by feeding diets with processed black soldier fly (Hermetia illucens) larvae meals and fractions Animal Microbiome Black soldier fly Atlantic salmon Gut microbiota Predicted microbial metabolic capacity Full-fat insect meal Defatted insect meal |
title | Modulation of Atlantic salmon (Salmo salar) gut microbiota composition and predicted metabolic capacity by feeding diets with processed black soldier fly (Hermetia illucens) larvae meals and fractions |
title_full | Modulation of Atlantic salmon (Salmo salar) gut microbiota composition and predicted metabolic capacity by feeding diets with processed black soldier fly (Hermetia illucens) larvae meals and fractions |
title_fullStr | Modulation of Atlantic salmon (Salmo salar) gut microbiota composition and predicted metabolic capacity by feeding diets with processed black soldier fly (Hermetia illucens) larvae meals and fractions |
title_full_unstemmed | Modulation of Atlantic salmon (Salmo salar) gut microbiota composition and predicted metabolic capacity by feeding diets with processed black soldier fly (Hermetia illucens) larvae meals and fractions |
title_short | Modulation of Atlantic salmon (Salmo salar) gut microbiota composition and predicted metabolic capacity by feeding diets with processed black soldier fly (Hermetia illucens) larvae meals and fractions |
title_sort | modulation of atlantic salmon salmo salar gut microbiota composition and predicted metabolic capacity by feeding diets with processed black soldier fly hermetia illucens larvae meals and fractions |
topic | Black soldier fly Atlantic salmon Gut microbiota Predicted microbial metabolic capacity Full-fat insect meal Defatted insect meal |
url | https://doi.org/10.1186/s42523-021-00161-w |
work_keys_str_mv | AT pabodhaweththasinghe modulationofatlanticsalmonsalmosalargutmicrobiotacompositionandpredictedmetaboliccapacitybyfeedingdietswithprocessedblacksoldierflyhermetiaillucenslarvaemealsandfractions AT sergiodcrocha modulationofatlanticsalmonsalmosalargutmicrobiotacompositionandpredictedmetaboliccapacitybyfeedingdietswithprocessedblacksoldierflyhermetiaillucenslarvaemealsandfractions AT oveøyas modulationofatlanticsalmonsalmosalargutmicrobiotacompositionandpredictedmetaboliccapacitybyfeedingdietswithprocessedblacksoldierflyhermetiaillucenslarvaemealsandfractions AT leidylagos modulationofatlanticsalmonsalmosalargutmicrobiotacompositionandpredictedmetaboliccapacitybyfeedingdietswithprocessedblacksoldierflyhermetiaillucenslarvaemealsandfractions AT jonøhansen modulationofatlanticsalmonsalmosalargutmicrobiotacompositionandpredictedmetaboliccapacitybyfeedingdietswithprocessedblacksoldierflyhermetiaillucenslarvaemealsandfractions AT livtmydland modulationofatlanticsalmonsalmosalargutmicrobiotacompositionandpredictedmetaboliccapacitybyfeedingdietswithprocessedblacksoldierflyhermetiaillucenslarvaemealsandfractions AT margarethøverland modulationofatlanticsalmonsalmosalargutmicrobiotacompositionandpredictedmetaboliccapacitybyfeedingdietswithprocessedblacksoldierflyhermetiaillucenslarvaemealsandfractions |