Goluzin's extension of the Schwarz-Pick inequality
<p/> <p>For a function <inline-formula><graphic file="1029-242X-1997-781962-i1.gif"/></inline-formula> holomorphic and bounded, <inline-formula><graphic file="1029-242X-1997-781962-i2.gif"/></inline-formula>, with the expansion <...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
1997-01-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://www.journalofinequalitiesandapplications.com/content/1/781962 |
_version_ | 1819057617263132672 |
---|---|
author | Yamashita Shinji |
author_facet | Yamashita Shinji |
author_sort | Yamashita Shinji |
collection | DOAJ |
description | <p/> <p>For a function <inline-formula><graphic file="1029-242X-1997-781962-i1.gif"/></inline-formula> holomorphic and bounded, <inline-formula><graphic file="1029-242X-1997-781962-i2.gif"/></inline-formula>, with the expansion <inline-formula><graphic file="1029-242X-1997-781962-i3.gif"/></inline-formula> in the disk <inline-formula><graphic file="1029-242X-1997-781962-i4.gif"/></inline-formula>, we set <inline-formula><graphic file="1029-242X-1997-781962-i5.gif"/></inline-formula> Goluzin's extension of the Schwarz-Pick inequality is that <inline-formula><graphic file="1029-242X-1997-781962-i6.gif"/></inline-formula> We shall further improve Goluzin's inequality with a complete description on the equality condition. For a holomorphic map from a hyperbolic plane domain into another, one can prove a similar result in terms of the Poincaré metric.</p> |
first_indexed | 2024-12-21T13:42:09Z |
format | Article |
id | doaj.art-34eba5710915400bbc46ab740c546df0 |
institution | Directory Open Access Journal |
issn | 1025-5834 1029-242X |
language | English |
last_indexed | 2024-12-21T13:42:09Z |
publishDate | 1997-01-01 |
publisher | SpringerOpen |
record_format | Article |
series | Journal of Inequalities and Applications |
spelling | doaj.art-34eba5710915400bbc46ab740c546df02022-12-21T19:01:59ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X1997-01-0119974781962Goluzin's extension of the Schwarz-Pick inequalityYamashita Shinji<p/> <p>For a function <inline-formula><graphic file="1029-242X-1997-781962-i1.gif"/></inline-formula> holomorphic and bounded, <inline-formula><graphic file="1029-242X-1997-781962-i2.gif"/></inline-formula>, with the expansion <inline-formula><graphic file="1029-242X-1997-781962-i3.gif"/></inline-formula> in the disk <inline-formula><graphic file="1029-242X-1997-781962-i4.gif"/></inline-formula>, we set <inline-formula><graphic file="1029-242X-1997-781962-i5.gif"/></inline-formula> Goluzin's extension of the Schwarz-Pick inequality is that <inline-formula><graphic file="1029-242X-1997-781962-i6.gif"/></inline-formula> We shall further improve Goluzin's inequality with a complete description on the equality condition. For a holomorphic map from a hyperbolic plane domain into another, one can prove a similar result in terms of the Poincaré metric.</p>http://www.journalofinequalitiesandapplications.com/content/1/781962Bounded holomorphic functionsSchwarz's inequalityPoincaré density |
spellingShingle | Yamashita Shinji Goluzin's extension of the Schwarz-Pick inequality Journal of Inequalities and Applications Bounded holomorphic functions Schwarz's inequality Poincaré density |
title | Goluzin's extension of the Schwarz-Pick inequality |
title_full | Goluzin's extension of the Schwarz-Pick inequality |
title_fullStr | Goluzin's extension of the Schwarz-Pick inequality |
title_full_unstemmed | Goluzin's extension of the Schwarz-Pick inequality |
title_short | Goluzin's extension of the Schwarz-Pick inequality |
title_sort | goluzin s extension of the schwarz pick inequality |
topic | Bounded holomorphic functions Schwarz's inequality Poincaré density |
url | http://www.journalofinequalitiesandapplications.com/content/1/781962 |
work_keys_str_mv | AT yamashitashinji goluzinsextensionoftheschwarzpickinequality |