Multiple-kernel learning for genomic data mining and prediction

Abstract Background Advances in medical technology have allowed for customized prognosis, diagnosis, and treatment regimens that utilize multiple heterogeneous data sources. Multiple kernel learning (MKL) is well suited for the integration of multiple high throughput data sources. MKL remains to be...

Full description

Bibliographic Details
Main Authors: Christopher M. Wilson, Kaiqiao Li, Xiaoqing Yu, Pei-Fen Kuan, Xuefeng Wang
Format: Article
Language:English
Published: BMC 2019-08-01
Series:BMC Bioinformatics
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12859-019-2992-1
Description
Summary:Abstract Background Advances in medical technology have allowed for customized prognosis, diagnosis, and treatment regimens that utilize multiple heterogeneous data sources. Multiple kernel learning (MKL) is well suited for the integration of multiple high throughput data sources. MKL remains to be under-utilized by genomic researchers partly due to the lack of unified guidelines for its use, and benchmark genomic datasets. Results We provide three implementations of MKL in R. These methods are applied to simulated data to illustrate that MKL can select appropriate models. We also apply MKL to combine clinical information with miRNA gene expression data of ovarian cancer study into a single analysis. Lastly, we show that MKL can identify gene sets that are known to play a role in the prognostic prediction of 15 cancer types using gene expression data from The Cancer Genome Atlas, as well as, identify new gene sets for the future research. Conclusion Multiple kernel learning coupled with modern optimization techniques provides a promising learning tool for building predictive models based on multi-source genomic data. MKL also provides an automated scheme for kernel prioritization and parameter tuning. The methods used in the paper are implemented as an R package called RMKL package, which is freely available for download through CRAN at https://CRAN.R-project.org/package=RMKL.
ISSN:1471-2105