DEVELOPMENT OF INFILL DRILLING RECOVERY MODELS FOR CARBONATE RESERVOIRS USING NEURAL NETWORKS AND MULTIVARIATE STATISTICAL AS A NOVEL METHOD
This work introduces a novel methodology to improve reservoir characterization models. In this methodology we integrated multivariate statistical analyses, and neural network models for forecasting the infill drilling ultimate oil recovery from reservoirs in San Andres and Clearfork carbonate format...
Main Authors: | R SOTO, CH. H WU, A. M BUBELA |
---|---|
Format: | Article |
Language: | English |
Published: |
Instituto Colombiano del petróleo y energías de la Transición - ICPET
1999-01-01
|
Series: | CT&F Ciencia, Tecnología & Futuro |
Subjects: | |
Online Access: | http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-53831999000100001 |
Similar Items
-
Comparison Different Techniques of Optimum Location for Infill Well Drilling
by: Sajjad H. Al-adliy, et al.
Published: (2024-03-01) -
Mejoramiento de Imágenes Luminosas utilizando el Modelo de Intersección Cortica
by: Kevin Salvador Aguilar Domínguez, et al.
Published: (2019-06-01) -
Modelo no lineal basado en redes neuronales de unidades producto para clasificación. Una aplicación a la determinación del riesgo en tarjetas de crédito||Non-linear model for classification based on product-unit neural networks. An application to determine credit card risk
by: Martínez-Estudillo, F. J., et al.
Published: (2007-01-01) -
Big data y cadenas de suministros un binomio complejo para américa latina
by: Raúl Rodríguez-Luna, et al.
Published: (2020-12-01) -
Comparación de modelos físicos y de inteligencia artificial para predicción de niveles de inundación
by: Luis M. Agudelo Otálora, et al.
Published: (2018-09-01)