Efficient Face Region Occlusion Repair Based on T-GANs

In the image restoration task, the generative adversarial network (GAN) demonstrates excellent performance. However, there remain significant challenges concerning the task of generative face region inpainting. Traditional model approaches are ineffective in maintaining global consistency among faci...

Full description

Bibliographic Details
Main Authors: Qiaoyue Man, Young-Im Cho
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/12/10/2162
Description
Summary:In the image restoration task, the generative adversarial network (GAN) demonstrates excellent performance. However, there remain significant challenges concerning the task of generative face region inpainting. Traditional model approaches are ineffective in maintaining global consistency among facial components and recovering fine facial details. To address this challenge, this study proposes a facial restoration generation network combined a transformer module and GAN to accurately detect the missing feature parts of the face and perform effective and fine-grained restoration generation. We validate the proposed model using different image quality evaluation methods and several open-source face datasets and experimentally demonstrate that our model outperforms other current state-of-the-art network models in terms of generated image quality and the coherent naturalness of facial features in face image restoration generation tasks.
ISSN:2079-9292