Precise asymptotic behavior of regularly varying solutions of second order half-linear differential equations

Accurate asymptotic formulas for regularly varying solutions of the second order half-linear differential equation \begin{equation*} (|x'|^{\alpha}\textrm{sgn}\; x')' + q(t)|x|^{\alpha}\textrm{sgn}\; x = 0, \end{equation*} will be established explicitly, depending on the rate of deca...

Full description

Bibliographic Details
Main Authors: Takaŝi Kusano, Jelena Manojlović
Format: Article
Language:English
Published: University of Szeged 2016-08-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=4566
Description
Summary:Accurate asymptotic formulas for regularly varying solutions of the second order half-linear differential equation \begin{equation*} (|x'|^{\alpha}\textrm{sgn}\; x')' + q(t)|x|^{\alpha}\textrm{sgn}\; x = 0, \end{equation*} will be established explicitly, depending on the rate of decay toward zero of the function \begin{equation*}Q_c(t) = t^{\alpha}\int_t^{\infty}q(s)ds - c\end{equation*} as $t\to\infty$, where $c<\alpha^\alpha(\alpha+1)^{-\alpha-1}$.
ISSN:1417-3875