Precise asymptotic behavior of regularly varying solutions of second order half-linear differential equations

Accurate asymptotic formulas for regularly varying solutions of the second order half-linear differential equation \begin{equation*} (|x'|^{\alpha}\textrm{sgn}\; x')' + q(t)|x|^{\alpha}\textrm{sgn}\; x = 0, \end{equation*} will be established explicitly, depending on the rate of deca...

Full description

Bibliographic Details
Main Authors: Takaŝi Kusano, Jelena Manojlović
Format: Article
Language:English
Published: University of Szeged 2016-08-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=4566
_version_ 1797830564779130880
author Takaŝi Kusano
Jelena Manojlović
author_facet Takaŝi Kusano
Jelena Manojlović
author_sort Takaŝi Kusano
collection DOAJ
description Accurate asymptotic formulas for regularly varying solutions of the second order half-linear differential equation \begin{equation*} (|x'|^{\alpha}\textrm{sgn}\; x')' + q(t)|x|^{\alpha}\textrm{sgn}\; x = 0, \end{equation*} will be established explicitly, depending on the rate of decay toward zero of the function \begin{equation*}Q_c(t) = t^{\alpha}\int_t^{\infty}q(s)ds - c\end{equation*} as $t\to\infty$, where $c<\alpha^\alpha(\alpha+1)^{-\alpha-1}$.
first_indexed 2024-04-09T13:38:06Z
format Article
id doaj.art-35056b7b33874584a842d7df8ed014a9
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:38:06Z
publishDate 2016-08-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-35056b7b33874584a842d7df8ed014a92023-05-09T07:53:06ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752016-08-0120166212410.14232/ejqtde.2016.1.624566Precise asymptotic behavior of regularly varying solutions of second order half-linear differential equationsTakaŝi Kusano0Jelena Manojlović1Hiroshima University, Higashi-Hiroshima, JapanUniversity of Nis, Nis, SerbiaAccurate asymptotic formulas for regularly varying solutions of the second order half-linear differential equation \begin{equation*} (|x'|^{\alpha}\textrm{sgn}\; x')' + q(t)|x|^{\alpha}\textrm{sgn}\; x = 0, \end{equation*} will be established explicitly, depending on the rate of decay toward zero of the function \begin{equation*}Q_c(t) = t^{\alpha}\int_t^{\infty}q(s)ds - c\end{equation*} as $t\to\infty$, where $c<\alpha^\alpha(\alpha+1)^{-\alpha-1}$.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=4566half-linear differential equationsregularly varying solutionsslowly varying solutionsasymptotic behavior of solutionspositive solutions
spellingShingle Takaŝi Kusano
Jelena Manojlović
Precise asymptotic behavior of regularly varying solutions of second order half-linear differential equations
Electronic Journal of Qualitative Theory of Differential Equations
half-linear differential equations
regularly varying solutions
slowly varying solutions
asymptotic behavior of solutions
positive solutions
title Precise asymptotic behavior of regularly varying solutions of second order half-linear differential equations
title_full Precise asymptotic behavior of regularly varying solutions of second order half-linear differential equations
title_fullStr Precise asymptotic behavior of regularly varying solutions of second order half-linear differential equations
title_full_unstemmed Precise asymptotic behavior of regularly varying solutions of second order half-linear differential equations
title_short Precise asymptotic behavior of regularly varying solutions of second order half-linear differential equations
title_sort precise asymptotic behavior of regularly varying solutions of second order half linear differential equations
topic half-linear differential equations
regularly varying solutions
slowly varying solutions
asymptotic behavior of solutions
positive solutions
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=4566
work_keys_str_mv AT takasikusano preciseasymptoticbehaviorofregularlyvaryingsolutionsofsecondorderhalflineardifferentialequations
AT jelenamanojlovic preciseasymptoticbehaviorofregularlyvaryingsolutionsofsecondorderhalflineardifferentialequations