Laser-Driven Ramp Compression to Investigate and Model Dynamic Response of Iron at High Strain Rates

Efficient laser shock processing of materials requires a good characterization of their dynamic response to pulsed compression, and predictive numerical models to simulate the thermomechanical processes governing this response. Due to the extremely high strain rates involved, the kinetics of these p...

Full description

Bibliographic Details
Main Authors: Nourou Amadou, Erik Brambrink, Thibaut de Rességuier, Adamou Ousmane Manga, Almoustapha Aboubacar, Björn Borm, Anaïs Molineri
Format: Article
Language:English
Published: MDPI AG 2016-12-01
Series:Metals
Subjects:
Online Access:http://www.mdpi.com/2075-4701/6/12/320
Description
Summary:Efficient laser shock processing of materials requires a good characterization of their dynamic response to pulsed compression, and predictive numerical models to simulate the thermomechanical processes governing this response. Due to the extremely high strain rates involved, the kinetics of these processes should be accounted for. In this paper, we present an experimental investigation of the dynamic behavior of iron under laser driven ramp loading, then we compare the results to the predictions of a constitutive model including viscoplasticity and a thermodynamically consistent description of the bcc to hcp phase transformation expected near 13 GPa. Both processes are shown to affect wave propagation and pressure decay, and the influence of the kinetics of the phase transformation on the velocity records is discussed in details.
ISSN:2075-4701