Biometric Quantization through Detection Rate Optimized Bit Allocation

Extracting binary strings from real-valued biometric templates is a fundamental step in many biometric template protection systems, such as fuzzy commitment, fuzzy extractor, secure sketch, and helper data systems. Previous work has been focusing on the design of optimal quantization and coding for...

Full description

Bibliographic Details
Main Authors: C. Chen, R. N. J. Veldhuis, T. A. M. Kevenaar, A. H. M. Akkermans
Format: Article
Language:English
Published: SpringerOpen 2009-01-01
Series:EURASIP Journal on Advances in Signal Processing
Online Access:http://dx.doi.org/10.1155/2009/784834
Description
Summary:Extracting binary strings from real-valued biometric templates is a fundamental step in many biometric template protection systems, such as fuzzy commitment, fuzzy extractor, secure sketch, and helper data systems. Previous work has been focusing on the design of optimal quantization and coding for each single feature component, yet the binary string—concatenation of all coded feature components—is not optimal. In this paper, we present a detection rate optimized bit allocation (DROBA) principle, which assigns more bits to discriminative features and fewer bits to nondiscriminative features. We further propose a dynamic programming (DP) approach and a greedy search (GS) approach to achieve DROBA. Experiments of DROBA on the FVC2000 fingerprint database and the FRGC face database show good performances. As a universal method, DROBA is applicable to arbitrary biometric modalities, such as fingerprint texture, iris, signature, and face. DROBA will bring significant benefits not only to the template protection systems but also to the systems with fast matching requirements or constrained storage capability.
ISSN:1687-6172
1687-6180