Results from the Fourth WMO Filter Radiometer Comparison for aerosol optical depth measurements
This study presents the results of the Fourth Filter Radiometer Comparison that was held in Davos, Switzerland, between 28 September and 16 October 2015. Thirty filter radiometers and spectroradiometers from 12 countries participated including reference instruments from global aerosol networks. T...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2018-03-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://www.atmos-chem-phys.net/18/3185/2018/acp-18-3185-2018.pdf |
_version_ | 1828482423485104128 |
---|---|
author | S. Kazadzis S. Kazadzis N. Kouremeti H. Diémoz J. Gröbner B. W. Forgan M. Campanelli V. Estellés K. Lantz J. Michalsky T. Carlund E. Cuevas C. Toledano R. Becker S. Nyeki P. G. Kosmopoulos V. Tatsiankou L. Vuilleumier F. M. Denn N. Ohkawara O. Ijima P. Goloub P. I. Raptis P. I. Raptis M. Milner K. Behrens A. Barreto A. Barreto A. Barreto G. Martucci E. Hall J. Wendell B. E. Fabbri C. Wehrli |
author_facet | S. Kazadzis S. Kazadzis N. Kouremeti H. Diémoz J. Gröbner B. W. Forgan M. Campanelli V. Estellés K. Lantz J. Michalsky T. Carlund E. Cuevas C. Toledano R. Becker S. Nyeki P. G. Kosmopoulos V. Tatsiankou L. Vuilleumier F. M. Denn N. Ohkawara O. Ijima P. Goloub P. I. Raptis P. I. Raptis M. Milner K. Behrens A. Barreto A. Barreto A. Barreto G. Martucci E. Hall J. Wendell B. E. Fabbri C. Wehrli |
author_sort | S. Kazadzis |
collection | DOAJ |
description | This study presents the results of the Fourth Filter Radiometer Comparison that was held in
Davos, Switzerland, between 28 September and 16 October 2015. Thirty filter
radiometers and spectroradiometers from 12 countries participated including
reference instruments from global aerosol networks. The absolute differences
of all instruments compared to the reference have been based on the World
Meteorological Organization (WMO) criterion defined as follows: <q>95% of
the measured data has to be within 0.005 ± 0.001∕<i>m</i></q> (where <i>m</i> is
the air mass). At least 24 out of 29 instruments achieved this goal at both
500 and 865 nm, while 12 out of 17 and 13 out of 21 achieved this at 368 and
412 nm, respectively. While searching for sources of differences among
different instruments, it was found that all individual differences linked to
Rayleigh, NO<sub>2</sub>, ozone, water vapor calculations and related optical
depths and air mass calculations were smaller than 0.01 in aerosol optical
depth (AOD) at 500 and 865 nm. Different cloud-detecting algorithms used
have been compared. Ångström exponent calculations showed relatively
large differences among different instruments, partly because of the high
calculation uncertainty of this parameter in low AOD conditions. The overall
low deviations of these AOD results and the high accuracy of reference
aerosol network instruments demonstrated a promising framework to achieve
homogeneity, compatibility and harmonization among the different spectral AOD
networks in the near future. |
first_indexed | 2024-12-11T08:15:55Z |
format | Article |
id | doaj.art-3539722db2cc4ad883e797bd3689dfc4 |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-12-11T08:15:55Z |
publishDate | 2018-03-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-3539722db2cc4ad883e797bd3689dfc42022-12-22T01:14:47ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242018-03-01183185320110.5194/acp-18-3185-2018Results from the Fourth WMO Filter Radiometer Comparison for aerosol optical depth measurementsS. Kazadzis0S. Kazadzis1N. Kouremeti2H. Diémoz3J. Gröbner4B. W. Forgan5M. Campanelli6V. Estellés7K. Lantz8J. Michalsky9T. Carlund10E. Cuevas11C. Toledano12R. Becker13S. Nyeki14P. G. Kosmopoulos15V. Tatsiankou16L. Vuilleumier17F. M. Denn18N. Ohkawara19O. Ijima20P. Goloub21P. I. Raptis22P. I. Raptis23M. Milner24K. Behrens25A. Barreto26A. Barreto27A. Barreto28G. Martucci29E. Hall30J. Wendell31B. E. Fabbri32C. Wehrli33Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center, Davos, SwitzerlandInstitute of Environmental Research and Sustainable Development, National Observatory of Athens, Athens, GreecePhysikalisch-Meteorologisches Observatorium Davos, World Radiation Center, Davos, SwitzerlandAria e Atmosfera – Radiazione solare e atmosfera ARPA Valle, Saint-Christophe 11020, ItalyPhysikalisch-Meteorologisches Observatorium Davos, World Radiation Center, Davos, SwitzerlandStandards & Metrology, Bureau of Meteorology, Docklands Vic 3008, AustraliaSACI-CNR,Via Fosso del Cavaliere 100, 00133, Rome, ItalyDepartment of Earth Physics and Thermodynamics, Solar Radiation and Research Unit, Univ. de València, Valencia, SpainCooperative Institute for Research in Environmental Studies, NOAA/ESRL/GMD, Boulder, CO 80305, USACooperative Institute for Research in Environmental Studies, NOAA/ESRL/GMD, Boulder, CO 80305, USASwedish Meteorological and Hydrological Institute, 601 76 Norrköping, SwedenIzaña Atmospheric Research Centre, State Meteorological Agency (AEMET), Santa Cruz de Tenerife, SpainAtmospheric Optics Group (GOA), University of Valladolid 47011, Valladolid, SpainDeutscher Wetterdienst Meteorologisches Observatorium Lindenberg, 15848 Tauche, GermanyPhysikalisch-Meteorologisches Observatorium Davos, World Radiation Center, Davos, SwitzerlandInstitute of Environmental Research and Sustainable Development, National Observatory of Athens, Athens, GreeceCOFOVO Energy Inc., 800 King Edward Avenue, Suite 3014, Ottawa, ON, K1N 6N5, CanadaFederal Office of Meteorology and Climatology MeteoSwiss, Payerne, SwitzerlandScience Systems & Applications Inc NASA Langley Science Directorate, Hampton, VA 23666, USAJapan Meteorological Agency 1-3-4 Otemachi, Chiyoda-ku, 100-8122 Tokyo, JapanJapan Meteorological Agency 1-3-4 Otemachi, Chiyoda-ku, 100-8122 Tokyo, JapanLaboratoire d'Optique Atmosphérique, Univ. des Sciences et Technologies de Lille 159655 Villeneuve d'Ascq, FrancePhysikalisch-Meteorologisches Observatorium Davos, World Radiation Center, Davos, SwitzerlandInstitute of Environmental Research and Sustainable Development, National Observatory of Athens, Athens, GreeceStandards & Metrology, Bureau of Meteorology, Docklands Vic 3008, AustraliaDeutscher Wetterdienst Meteorologisches Observatorium Lindenberg, 15848 Tauche, GermanyIzaña Atmospheric Research Centre, State Meteorological Agency (AEMET), Santa Cruz de Tenerife, SpainAtmospheric Optics Group (GOA), University of Valladolid 47011, Valladolid, SpainCimel Electronique, 75011, Paris, FranceFederal Office of Meteorology and Climatology MeteoSwiss, Payerne, SwitzerlandCooperative Institute for Research in Environmental Studies, NOAA/ESRL/GMD, Boulder, CO 80305, USACooperative Institute for Research in Environmental Studies, NOAA/ESRL/GMD, Boulder, CO 80305, USAScience Systems & Applications Inc NASA Langley Science Directorate, Hampton, VA 23666, USAPhysikalisch-Meteorologisches Observatorium Davos, World Radiation Center, Davos, SwitzerlandThis study presents the results of the Fourth Filter Radiometer Comparison that was held in Davos, Switzerland, between 28 September and 16 October 2015. Thirty filter radiometers and spectroradiometers from 12 countries participated including reference instruments from global aerosol networks. The absolute differences of all instruments compared to the reference have been based on the World Meteorological Organization (WMO) criterion defined as follows: <q>95% of the measured data has to be within 0.005 ± 0.001∕<i>m</i></q> (where <i>m</i> is the air mass). At least 24 out of 29 instruments achieved this goal at both 500 and 865 nm, while 12 out of 17 and 13 out of 21 achieved this at 368 and 412 nm, respectively. While searching for sources of differences among different instruments, it was found that all individual differences linked to Rayleigh, NO<sub>2</sub>, ozone, water vapor calculations and related optical depths and air mass calculations were smaller than 0.01 in aerosol optical depth (AOD) at 500 and 865 nm. Different cloud-detecting algorithms used have been compared. Ångström exponent calculations showed relatively large differences among different instruments, partly because of the high calculation uncertainty of this parameter in low AOD conditions. The overall low deviations of these AOD results and the high accuracy of reference aerosol network instruments demonstrated a promising framework to achieve homogeneity, compatibility and harmonization among the different spectral AOD networks in the near future.https://www.atmos-chem-phys.net/18/3185/2018/acp-18-3185-2018.pdf |
spellingShingle | S. Kazadzis S. Kazadzis N. Kouremeti H. Diémoz J. Gröbner B. W. Forgan M. Campanelli V. Estellés K. Lantz J. Michalsky T. Carlund E. Cuevas C. Toledano R. Becker S. Nyeki P. G. Kosmopoulos V. Tatsiankou L. Vuilleumier F. M. Denn N. Ohkawara O. Ijima P. Goloub P. I. Raptis P. I. Raptis M. Milner K. Behrens A. Barreto A. Barreto A. Barreto G. Martucci E. Hall J. Wendell B. E. Fabbri C. Wehrli Results from the Fourth WMO Filter Radiometer Comparison for aerosol optical depth measurements Atmospheric Chemistry and Physics |
title | Results from the Fourth WMO Filter Radiometer Comparison for aerosol optical depth measurements |
title_full | Results from the Fourth WMO Filter Radiometer Comparison for aerosol optical depth measurements |
title_fullStr | Results from the Fourth WMO Filter Radiometer Comparison for aerosol optical depth measurements |
title_full_unstemmed | Results from the Fourth WMO Filter Radiometer Comparison for aerosol optical depth measurements |
title_short | Results from the Fourth WMO Filter Radiometer Comparison for aerosol optical depth measurements |
title_sort | results from the fourth wmo filter radiometer comparison for aerosol optical depth measurements |
url | https://www.atmos-chem-phys.net/18/3185/2018/acp-18-3185-2018.pdf |
work_keys_str_mv | AT skazadzis resultsfromthefourthwmofilterradiometercomparisonforaerosolopticaldepthmeasurements AT skazadzis resultsfromthefourthwmofilterradiometercomparisonforaerosolopticaldepthmeasurements AT nkouremeti resultsfromthefourthwmofilterradiometercomparisonforaerosolopticaldepthmeasurements AT hdiemoz resultsfromthefourthwmofilterradiometercomparisonforaerosolopticaldepthmeasurements AT jgrobner resultsfromthefourthwmofilterradiometercomparisonforaerosolopticaldepthmeasurements AT bwforgan resultsfromthefourthwmofilterradiometercomparisonforaerosolopticaldepthmeasurements AT mcampanelli resultsfromthefourthwmofilterradiometercomparisonforaerosolopticaldepthmeasurements AT vestelles resultsfromthefourthwmofilterradiometercomparisonforaerosolopticaldepthmeasurements AT klantz resultsfromthefourthwmofilterradiometercomparisonforaerosolopticaldepthmeasurements AT jmichalsky resultsfromthefourthwmofilterradiometercomparisonforaerosolopticaldepthmeasurements AT tcarlund resultsfromthefourthwmofilterradiometercomparisonforaerosolopticaldepthmeasurements AT ecuevas resultsfromthefourthwmofilterradiometercomparisonforaerosolopticaldepthmeasurements AT ctoledano resultsfromthefourthwmofilterradiometercomparisonforaerosolopticaldepthmeasurements AT rbecker resultsfromthefourthwmofilterradiometercomparisonforaerosolopticaldepthmeasurements AT snyeki resultsfromthefourthwmofilterradiometercomparisonforaerosolopticaldepthmeasurements AT pgkosmopoulos resultsfromthefourthwmofilterradiometercomparisonforaerosolopticaldepthmeasurements AT vtatsiankou resultsfromthefourthwmofilterradiometercomparisonforaerosolopticaldepthmeasurements AT lvuilleumier resultsfromthefourthwmofilterradiometercomparisonforaerosolopticaldepthmeasurements AT fmdenn resultsfromthefourthwmofilterradiometercomparisonforaerosolopticaldepthmeasurements AT nohkawara resultsfromthefourthwmofilterradiometercomparisonforaerosolopticaldepthmeasurements AT oijima resultsfromthefourthwmofilterradiometercomparisonforaerosolopticaldepthmeasurements AT pgoloub resultsfromthefourthwmofilterradiometercomparisonforaerosolopticaldepthmeasurements AT piraptis resultsfromthefourthwmofilterradiometercomparisonforaerosolopticaldepthmeasurements AT piraptis resultsfromthefourthwmofilterradiometercomparisonforaerosolopticaldepthmeasurements AT mmilner resultsfromthefourthwmofilterradiometercomparisonforaerosolopticaldepthmeasurements AT kbehrens resultsfromthefourthwmofilterradiometercomparisonforaerosolopticaldepthmeasurements AT abarreto resultsfromthefourthwmofilterradiometercomparisonforaerosolopticaldepthmeasurements AT abarreto resultsfromthefourthwmofilterradiometercomparisonforaerosolopticaldepthmeasurements AT abarreto resultsfromthefourthwmofilterradiometercomparisonforaerosolopticaldepthmeasurements AT gmartucci resultsfromthefourthwmofilterradiometercomparisonforaerosolopticaldepthmeasurements AT ehall resultsfromthefourthwmofilterradiometercomparisonforaerosolopticaldepthmeasurements AT jwendell resultsfromthefourthwmofilterradiometercomparisonforaerosolopticaldepthmeasurements AT befabbri resultsfromthefourthwmofilterradiometercomparisonforaerosolopticaldepthmeasurements AT cwehrli resultsfromthefourthwmofilterradiometercomparisonforaerosolopticaldepthmeasurements |