The Influence of Helium Dielectric Barrier Discharge Jet (DBDjet) Plasma Treatment on Bathocuproine (BCP) in p-i-n-Structure Perovskite Solar Cells
A bathocuproine (BCP) layer is typically used as the hole-blocking layer in p-i-n-structure perovskite solar cells (PSCs) between PC<sub>61</sub>BM and Ag electrodes. Before evaporating the Ag, we used a low-temperature (<40 °C) atmospheric-pressure dielectric barrier discharge jet (D...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-11-01
|
Series: | Polymers |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4360/13/22/4020 |
_version_ | 1797508643647651840 |
---|---|
author | Chung-Yueh Shih Jian-Zhi Huang Mei-Hsin Chen Cheng-Che Hsu Chih-I Wu I-Chun Cheng Jian-Zhang Chen |
author_facet | Chung-Yueh Shih Jian-Zhi Huang Mei-Hsin Chen Cheng-Che Hsu Chih-I Wu I-Chun Cheng Jian-Zhang Chen |
author_sort | Chung-Yueh Shih |
collection | DOAJ |
description | A bathocuproine (BCP) layer is typically used as the hole-blocking layer in p-i-n-structure perovskite solar cells (PSCs) between PC<sub>61</sub>BM and Ag electrodes. Before evaporating the Ag, we used a low-temperature (<40 °C) atmospheric-pressure dielectric barrier discharge jet (DBDjet) to treat the BCP with different scan rates. The main purpose of this was to change the contact resistance between the BCP layer and the Ag electrodes through surface modification using a DBDjet. The best power conversion efficiency (PCE) of 13.11% was achieved at a DBDjet scan rate of 2 cm/s. The He DBDjet treatment introduced nitrogen to form C−N bonds and create pits on the BCP layer. This deteriorated the interface between the BCP and the follow-up deposited-Ag top electrode. Compared to the device without the plasma treatment on the BCP layer, the He DBDjet treatment on the BCP layer reduced photocurrent hysteresis but deteriorated the fill factor and the efficiency of the PSCs. |
first_indexed | 2024-03-10T05:06:48Z |
format | Article |
id | doaj.art-3541b33dc1ce42bebbb09d5b385fd619 |
institution | Directory Open Access Journal |
issn | 2073-4360 |
language | English |
last_indexed | 2024-03-10T05:06:48Z |
publishDate | 2021-11-01 |
publisher | MDPI AG |
record_format | Article |
series | Polymers |
spelling | doaj.art-3541b33dc1ce42bebbb09d5b385fd6192023-11-23T01:10:30ZengMDPI AGPolymers2073-43602021-11-011322402010.3390/polym13224020The Influence of Helium Dielectric Barrier Discharge Jet (DBDjet) Plasma Treatment on Bathocuproine (BCP) in p-i-n-Structure Perovskite Solar CellsChung-Yueh Shih0Jian-Zhi Huang1Mei-Hsin Chen2Cheng-Che Hsu3Chih-I Wu4I-Chun Cheng5Jian-Zhang Chen6Graduate Institute of Applied Mechanics, National Taiwan University, Taipei City 10617, TaiwanGraduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei City 10617, TaiwanDepartment of Electro-Optical Engineering, National Taipei University of Technology, Taipei City 10608, TaiwanDepartment of Chemical Engineering, National Taiwan University, Taipei City 10617, TaiwanGraduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei City 10617, TaiwanGraduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei City 10617, TaiwanGraduate Institute of Applied Mechanics, National Taiwan University, Taipei City 10617, TaiwanA bathocuproine (BCP) layer is typically used as the hole-blocking layer in p-i-n-structure perovskite solar cells (PSCs) between PC<sub>61</sub>BM and Ag electrodes. Before evaporating the Ag, we used a low-temperature (<40 °C) atmospheric-pressure dielectric barrier discharge jet (DBDjet) to treat the BCP with different scan rates. The main purpose of this was to change the contact resistance between the BCP layer and the Ag electrodes through surface modification using a DBDjet. The best power conversion efficiency (PCE) of 13.11% was achieved at a DBDjet scan rate of 2 cm/s. The He DBDjet treatment introduced nitrogen to form C−N bonds and create pits on the BCP layer. This deteriorated the interface between the BCP and the follow-up deposited-Ag top electrode. Compared to the device without the plasma treatment on the BCP layer, the He DBDjet treatment on the BCP layer reduced photocurrent hysteresis but deteriorated the fill factor and the efficiency of the PSCs.https://www.mdpi.com/2073-4360/13/22/4020atmospheric-pressure plasmadielectric barrier dischargeperovskite solar cellconductive polymernon-thermal plasma |
spellingShingle | Chung-Yueh Shih Jian-Zhi Huang Mei-Hsin Chen Cheng-Che Hsu Chih-I Wu I-Chun Cheng Jian-Zhang Chen The Influence of Helium Dielectric Barrier Discharge Jet (DBDjet) Plasma Treatment on Bathocuproine (BCP) in p-i-n-Structure Perovskite Solar Cells Polymers atmospheric-pressure plasma dielectric barrier discharge perovskite solar cell conductive polymer non-thermal plasma |
title | The Influence of Helium Dielectric Barrier Discharge Jet (DBDjet) Plasma Treatment on Bathocuproine (BCP) in p-i-n-Structure Perovskite Solar Cells |
title_full | The Influence of Helium Dielectric Barrier Discharge Jet (DBDjet) Plasma Treatment on Bathocuproine (BCP) in p-i-n-Structure Perovskite Solar Cells |
title_fullStr | The Influence of Helium Dielectric Barrier Discharge Jet (DBDjet) Plasma Treatment on Bathocuproine (BCP) in p-i-n-Structure Perovskite Solar Cells |
title_full_unstemmed | The Influence of Helium Dielectric Barrier Discharge Jet (DBDjet) Plasma Treatment on Bathocuproine (BCP) in p-i-n-Structure Perovskite Solar Cells |
title_short | The Influence of Helium Dielectric Barrier Discharge Jet (DBDjet) Plasma Treatment on Bathocuproine (BCP) in p-i-n-Structure Perovskite Solar Cells |
title_sort | influence of helium dielectric barrier discharge jet dbdjet plasma treatment on bathocuproine bcp in p i n structure perovskite solar cells |
topic | atmospheric-pressure plasma dielectric barrier discharge perovskite solar cell conductive polymer non-thermal plasma |
url | https://www.mdpi.com/2073-4360/13/22/4020 |
work_keys_str_mv | AT chungyuehshih theinfluenceofheliumdielectricbarrierdischargejetdbdjetplasmatreatmentonbathocuproinebcpinpinstructureperovskitesolarcells AT jianzhihuang theinfluenceofheliumdielectricbarrierdischargejetdbdjetplasmatreatmentonbathocuproinebcpinpinstructureperovskitesolarcells AT meihsinchen theinfluenceofheliumdielectricbarrierdischargejetdbdjetplasmatreatmentonbathocuproinebcpinpinstructureperovskitesolarcells AT chengchehsu theinfluenceofheliumdielectricbarrierdischargejetdbdjetplasmatreatmentonbathocuproinebcpinpinstructureperovskitesolarcells AT chihiwu theinfluenceofheliumdielectricbarrierdischargejetdbdjetplasmatreatmentonbathocuproinebcpinpinstructureperovskitesolarcells AT ichuncheng theinfluenceofheliumdielectricbarrierdischargejetdbdjetplasmatreatmentonbathocuproinebcpinpinstructureperovskitesolarcells AT jianzhangchen theinfluenceofheliumdielectricbarrierdischargejetdbdjetplasmatreatmentonbathocuproinebcpinpinstructureperovskitesolarcells AT chungyuehshih influenceofheliumdielectricbarrierdischargejetdbdjetplasmatreatmentonbathocuproinebcpinpinstructureperovskitesolarcells AT jianzhihuang influenceofheliumdielectricbarrierdischargejetdbdjetplasmatreatmentonbathocuproinebcpinpinstructureperovskitesolarcells AT meihsinchen influenceofheliumdielectricbarrierdischargejetdbdjetplasmatreatmentonbathocuproinebcpinpinstructureperovskitesolarcells AT chengchehsu influenceofheliumdielectricbarrierdischargejetdbdjetplasmatreatmentonbathocuproinebcpinpinstructureperovskitesolarcells AT chihiwu influenceofheliumdielectricbarrierdischargejetdbdjetplasmatreatmentonbathocuproinebcpinpinstructureperovskitesolarcells AT ichuncheng influenceofheliumdielectricbarrierdischargejetdbdjetplasmatreatmentonbathocuproinebcpinpinstructureperovskitesolarcells AT jianzhangchen influenceofheliumdielectricbarrierdischargejetdbdjetplasmatreatmentonbathocuproinebcpinpinstructureperovskitesolarcells |