The Influence of Helium Dielectric Barrier Discharge Jet (DBDjet) Plasma Treatment on Bathocuproine (BCP) in p-i-n-Structure Perovskite Solar Cells

A bathocuproine (BCP) layer is typically used as the hole-blocking layer in p-i-n-structure perovskite solar cells (PSCs) between PC<sub>61</sub>BM and Ag electrodes. Before evaporating the Ag, we used a low-temperature (<40 °C) atmospheric-pressure dielectric barrier discharge jet (D...

Full description

Bibliographic Details
Main Authors: Chung-Yueh Shih, Jian-Zhi Huang, Mei-Hsin Chen, Cheng-Che Hsu, Chih-I Wu, I-Chun Cheng, Jian-Zhang Chen
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/13/22/4020
_version_ 1797508643647651840
author Chung-Yueh Shih
Jian-Zhi Huang
Mei-Hsin Chen
Cheng-Che Hsu
Chih-I Wu
I-Chun Cheng
Jian-Zhang Chen
author_facet Chung-Yueh Shih
Jian-Zhi Huang
Mei-Hsin Chen
Cheng-Che Hsu
Chih-I Wu
I-Chun Cheng
Jian-Zhang Chen
author_sort Chung-Yueh Shih
collection DOAJ
description A bathocuproine (BCP) layer is typically used as the hole-blocking layer in p-i-n-structure perovskite solar cells (PSCs) between PC<sub>61</sub>BM and Ag electrodes. Before evaporating the Ag, we used a low-temperature (<40 °C) atmospheric-pressure dielectric barrier discharge jet (DBDjet) to treat the BCP with different scan rates. The main purpose of this was to change the contact resistance between the BCP layer and the Ag electrodes through surface modification using a DBDjet. The best power conversion efficiency (PCE) of 13.11% was achieved at a DBDjet scan rate of 2 cm/s. The He DBDjet treatment introduced nitrogen to form C−N bonds and create pits on the BCP layer. This deteriorated the interface between the BCP and the follow-up deposited-Ag top electrode. Compared to the device without the plasma treatment on the BCP layer, the He DBDjet treatment on the BCP layer reduced photocurrent hysteresis but deteriorated the fill factor and the efficiency of the PSCs.
first_indexed 2024-03-10T05:06:48Z
format Article
id doaj.art-3541b33dc1ce42bebbb09d5b385fd619
institution Directory Open Access Journal
issn 2073-4360
language English
last_indexed 2024-03-10T05:06:48Z
publishDate 2021-11-01
publisher MDPI AG
record_format Article
series Polymers
spelling doaj.art-3541b33dc1ce42bebbb09d5b385fd6192023-11-23T01:10:30ZengMDPI AGPolymers2073-43602021-11-011322402010.3390/polym13224020The Influence of Helium Dielectric Barrier Discharge Jet (DBDjet) Plasma Treatment on Bathocuproine (BCP) in p-i-n-Structure Perovskite Solar CellsChung-Yueh Shih0Jian-Zhi Huang1Mei-Hsin Chen2Cheng-Che Hsu3Chih-I Wu4I-Chun Cheng5Jian-Zhang Chen6Graduate Institute of Applied Mechanics, National Taiwan University, Taipei City 10617, TaiwanGraduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei City 10617, TaiwanDepartment of Electro-Optical Engineering, National Taipei University of Technology, Taipei City 10608, TaiwanDepartment of Chemical Engineering, National Taiwan University, Taipei City 10617, TaiwanGraduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei City 10617, TaiwanGraduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei City 10617, TaiwanGraduate Institute of Applied Mechanics, National Taiwan University, Taipei City 10617, TaiwanA bathocuproine (BCP) layer is typically used as the hole-blocking layer in p-i-n-structure perovskite solar cells (PSCs) between PC<sub>61</sub>BM and Ag electrodes. Before evaporating the Ag, we used a low-temperature (<40 °C) atmospheric-pressure dielectric barrier discharge jet (DBDjet) to treat the BCP with different scan rates. The main purpose of this was to change the contact resistance between the BCP layer and the Ag electrodes through surface modification using a DBDjet. The best power conversion efficiency (PCE) of 13.11% was achieved at a DBDjet scan rate of 2 cm/s. The He DBDjet treatment introduced nitrogen to form C−N bonds and create pits on the BCP layer. This deteriorated the interface between the BCP and the follow-up deposited-Ag top electrode. Compared to the device without the plasma treatment on the BCP layer, the He DBDjet treatment on the BCP layer reduced photocurrent hysteresis but deteriorated the fill factor and the efficiency of the PSCs.https://www.mdpi.com/2073-4360/13/22/4020atmospheric-pressure plasmadielectric barrier dischargeperovskite solar cellconductive polymernon-thermal plasma
spellingShingle Chung-Yueh Shih
Jian-Zhi Huang
Mei-Hsin Chen
Cheng-Che Hsu
Chih-I Wu
I-Chun Cheng
Jian-Zhang Chen
The Influence of Helium Dielectric Barrier Discharge Jet (DBDjet) Plasma Treatment on Bathocuproine (BCP) in p-i-n-Structure Perovskite Solar Cells
Polymers
atmospheric-pressure plasma
dielectric barrier discharge
perovskite solar cell
conductive polymer
non-thermal plasma
title The Influence of Helium Dielectric Barrier Discharge Jet (DBDjet) Plasma Treatment on Bathocuproine (BCP) in p-i-n-Structure Perovskite Solar Cells
title_full The Influence of Helium Dielectric Barrier Discharge Jet (DBDjet) Plasma Treatment on Bathocuproine (BCP) in p-i-n-Structure Perovskite Solar Cells
title_fullStr The Influence of Helium Dielectric Barrier Discharge Jet (DBDjet) Plasma Treatment on Bathocuproine (BCP) in p-i-n-Structure Perovskite Solar Cells
title_full_unstemmed The Influence of Helium Dielectric Barrier Discharge Jet (DBDjet) Plasma Treatment on Bathocuproine (BCP) in p-i-n-Structure Perovskite Solar Cells
title_short The Influence of Helium Dielectric Barrier Discharge Jet (DBDjet) Plasma Treatment on Bathocuproine (BCP) in p-i-n-Structure Perovskite Solar Cells
title_sort influence of helium dielectric barrier discharge jet dbdjet plasma treatment on bathocuproine bcp in p i n structure perovskite solar cells
topic atmospheric-pressure plasma
dielectric barrier discharge
perovskite solar cell
conductive polymer
non-thermal plasma
url https://www.mdpi.com/2073-4360/13/22/4020
work_keys_str_mv AT chungyuehshih theinfluenceofheliumdielectricbarrierdischargejetdbdjetplasmatreatmentonbathocuproinebcpinpinstructureperovskitesolarcells
AT jianzhihuang theinfluenceofheliumdielectricbarrierdischargejetdbdjetplasmatreatmentonbathocuproinebcpinpinstructureperovskitesolarcells
AT meihsinchen theinfluenceofheliumdielectricbarrierdischargejetdbdjetplasmatreatmentonbathocuproinebcpinpinstructureperovskitesolarcells
AT chengchehsu theinfluenceofheliumdielectricbarrierdischargejetdbdjetplasmatreatmentonbathocuproinebcpinpinstructureperovskitesolarcells
AT chihiwu theinfluenceofheliumdielectricbarrierdischargejetdbdjetplasmatreatmentonbathocuproinebcpinpinstructureperovskitesolarcells
AT ichuncheng theinfluenceofheliumdielectricbarrierdischargejetdbdjetplasmatreatmentonbathocuproinebcpinpinstructureperovskitesolarcells
AT jianzhangchen theinfluenceofheliumdielectricbarrierdischargejetdbdjetplasmatreatmentonbathocuproinebcpinpinstructureperovskitesolarcells
AT chungyuehshih influenceofheliumdielectricbarrierdischargejetdbdjetplasmatreatmentonbathocuproinebcpinpinstructureperovskitesolarcells
AT jianzhihuang influenceofheliumdielectricbarrierdischargejetdbdjetplasmatreatmentonbathocuproinebcpinpinstructureperovskitesolarcells
AT meihsinchen influenceofheliumdielectricbarrierdischargejetdbdjetplasmatreatmentonbathocuproinebcpinpinstructureperovskitesolarcells
AT chengchehsu influenceofheliumdielectricbarrierdischargejetdbdjetplasmatreatmentonbathocuproinebcpinpinstructureperovskitesolarcells
AT chihiwu influenceofheliumdielectricbarrierdischargejetdbdjetplasmatreatmentonbathocuproinebcpinpinstructureperovskitesolarcells
AT ichuncheng influenceofheliumdielectricbarrierdischargejetdbdjetplasmatreatmentonbathocuproinebcpinpinstructureperovskitesolarcells
AT jianzhangchen influenceofheliumdielectricbarrierdischargejetdbdjetplasmatreatmentonbathocuproinebcpinpinstructureperovskitesolarcells