Simulation analysis of local land atmosphere coupling in rainy season over a typical underlying surface in the Tibetan Plateau

<p>The local land–atmosphere coupling (LoCo) investigates the interactions between soil conditions, surface fluxes, planetary boundary layer (PBL) growth, and the formations of convective clouds and precipitation. Studying LoCo over the Tibetan Plateau (TP) is of great significance for underst...

Full description

Bibliographic Details
Main Authors: G. Sun, Z. Hu, Y. Ma, Z. Xie, J. Wang, S. Yang
Format: Article
Language:English
Published: Copernicus Publications 2020-12-01
Series:Hydrology and Earth System Sciences
Online Access:https://hess.copernicus.org/articles/24/5937/2020/hess-24-5937-2020.pdf
_version_ 1819058377121071104
author G. Sun
G. Sun
G. Sun
Z. Hu
Y. Ma
Y. Ma
Z. Xie
J. Wang
S. Yang
S. Yang
S. Yang
author_facet G. Sun
G. Sun
G. Sun
Z. Hu
Y. Ma
Y. Ma
Z. Xie
J. Wang
S. Yang
S. Yang
S. Yang
author_sort G. Sun
collection DOAJ
description <p>The local land–atmosphere coupling (LoCo) investigates the interactions between soil conditions, surface fluxes, planetary boundary layer (PBL) growth, and the formations of convective clouds and precipitation. Studying LoCo over the Tibetan Plateau (TP) is of great significance for understanding the TP's role in the Asian water tower. A series of real-case simulations, using the Weather Research and Forecasting (WRF) model with different combinations of land surface model (LSM) schemes and PBL schemes, has been carried out to investigate the LoCo characteristics over a typical underlying surface in the central TP in the rainy season. The LoCo characteristics in the study area are analyzed by applying a mixing diagram to the simulation results. The analysis indicates that the WRF simulations, using the Noah with BouLac, Mellor-Yamada Nakanishi and Niino Level-2.5 PBL (MYNN), and Yonsei University (YSU) produce closer results to the observation in terms of curves of <span class="inline-formula"><i>C</i><sub>p</sub>⋅<i>θ</i></span> and <span class="inline-formula"><i>L</i><sub>v</sub>⋅<i>q</i></span>, surface fluxes (<span class="inline-formula"><i>H</i><sub>sfc</sub></span> and <span class="inline-formula"><i>L</i><i>E</i><sub>sfc</sub></span>), entrainment fluxes (<span class="inline-formula"><i>H</i><sub>ent</sub></span>, and <span class="inline-formula"><i>L</i><i>E</i><sub>ent</sub></span>) at site BJ of Nagqu Station (BJ/Nagqu) than those using the Community Land Model (CLM) with BouLac, MYNN, and YSU. The frequency distributions of <span class="inline-formula"><i>H</i><sub>sfc</sub></span>, <span class="inline-formula"><i>L</i><i>E</i><sub>sfc</sub></span>, <span class="inline-formula"><i>H</i><sub>ent</sub></span>, and <span class="inline-formula"><i>L</i><i>E</i><sub>ent</sub></span> in the study area confirm this result. The spatial distributions of simulated <span class="inline-formula"><i>H</i><sub>sfc</sub></span>, <span class="inline-formula"><i>L</i><i>E</i><sub>sfc</sub></span>, <span class="inline-formula"><i>H</i><sub>ent</sub></span>, and <span class="inline-formula"><i>L</i><i>E</i><sub>ent</sub></span>, using WRF with Noah and BouLac, suggest that the spatial distributions of <span class="inline-formula"><i>H</i><sub>sfc</sub></span> and <span class="inline-formula"><i>L</i><i>E</i><sub>sfc</sub></span> in the study area are consistent with that of soil moisture, but the spatial distributions of <span class="inline-formula"><i>H</i><sub>ent</sub></span> and <span class="inline-formula"><i>L</i><i>E</i><sub>ent</sub></span> are quite different from that of soil moisture. A close examination of the relationship between entrainment fluxes and cloud water content (<span class="inline-formula"><i>Q</i><sub>Cloud</sub></span>) reveals that the grids with small <span class="inline-formula"><i>H</i><sub>ent</sub></span> and large <span class="inline-formula"><i>L</i><i>E</i><sub>ent</sub></span> tend to have high <span class="inline-formula"><i>Q</i><sub>Cloud</sub></span> and <span class="inline-formula"><i>H</i><sub>sfc</sub></span>, suggesting that high <span class="inline-formula"><i>H</i><sub>sfc</sub></span> is conducive to convective cloud formation, which leads to small <span class="inline-formula"><i>H</i><sub>ent</sub></span> and large <span class="inline-formula"><i>L</i><i>E</i><sub>ent</sub></span>. A sensitivity analysis of LoCo to the soil moisture at site BJ/Nagqu indicates that, on a sunny day, an increase in soil moisture leads to an increase in <span class="inline-formula"><i>L</i><i>E</i><sub>sfc</sub></span> but decreases in <span class="inline-formula"><i>H</i><sub>sfc</sub></span>, <span class="inline-formula"><i>H</i><sub>ent</sub></span>, and <span class="inline-formula"><i>L</i><i>E</i><sub>ent</sub></span>. The sensitivity of the relationship between simulated maximum daytime PBL height (PBLH) and mean daytime evapotranspiration (ET) in the study area to soil moisture indicates the rate at which the maximum daytime PBLH decreases with the mean ET increase as the initial soil moisture goes up. The analysis of simulated <span class="inline-formula"><i>H</i><sub>sfc</sub></span>, <span class="inline-formula"><i>L</i><i>E</i><sub>sfc</sub></span>, <span class="inline-formula"><i>H</i><sub>ent</sub></span>, and <span class="inline-formula"><i>L</i><i>E</i><sub>ent</sub></span> under different soil moisture conditions reveals that the frequency of <span class="inline-formula"><i>H</i><sub>ent</sub></span> ranging from 80 to 240 W m<span class="inline-formula"><sup>−2</sup></span> and the frequency of <span class="inline-formula"><i>L</i><i>E</i><sub>ent</sub></span> ranging from <span class="inline-formula">−240</span> to <span class="inline-formula">−90</span> W m<span class="inline-formula"><sup>−2</sup></span> both increase as the initial soil moisture increases. Coupled with the changes in <span class="inline-formula"><i>Q</i><sub>Cloud</sub></span>, the changes in <span class="inline-formula"><i>H</i><sub>ent</sub></span> and <span class="inline-formula"><i>L</i><i>E</i><sub>ent</sub></span> as the initial soil moisture increases indicate that the rise in soil moisture leads to an increase in the cloud amount but a decrease in <span class="inline-formula"><i>Q</i><sub>Cloud</sub></span>.</p>
first_indexed 2024-12-21T13:54:14Z
format Article
id doaj.art-3542e78cc78c4565a4f45bbfccc2e379
institution Directory Open Access Journal
issn 1027-5606
1607-7938
language English
last_indexed 2024-12-21T13:54:14Z
publishDate 2020-12-01
publisher Copernicus Publications
record_format Article
series Hydrology and Earth System Sciences
spelling doaj.art-3542e78cc78c4565a4f45bbfccc2e3792022-12-21T19:01:36ZengCopernicus PublicationsHydrology and Earth System Sciences1027-56061607-79382020-12-01245937595110.5194/hess-24-5937-2020Simulation analysis of local land atmosphere coupling in rainy season over a typical underlying surface in the Tibetan PlateauG. Sun0G. Sun1G. Sun2Z. Hu3Y. Ma4Y. Ma5Z. Xie6J. Wang7S. Yang8S. Yang9S. Yang10School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, ChinaGuangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, ChinaSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, ChinaNorthwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, ChinaInstitute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, ChinaCAS Center for Excellence and Innovation in Tibetan Plateau Earth System Sciences, Beijing, ChinaInstitute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, ChinaNorthwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, ChinaSchool of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, ChinaGuangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, ChinaSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China<p>The local land–atmosphere coupling (LoCo) investigates the interactions between soil conditions, surface fluxes, planetary boundary layer (PBL) growth, and the formations of convective clouds and precipitation. Studying LoCo over the Tibetan Plateau (TP) is of great significance for understanding the TP's role in the Asian water tower. A series of real-case simulations, using the Weather Research and Forecasting (WRF) model with different combinations of land surface model (LSM) schemes and PBL schemes, has been carried out to investigate the LoCo characteristics over a typical underlying surface in the central TP in the rainy season. The LoCo characteristics in the study area are analyzed by applying a mixing diagram to the simulation results. The analysis indicates that the WRF simulations, using the Noah with BouLac, Mellor-Yamada Nakanishi and Niino Level-2.5 PBL (MYNN), and Yonsei University (YSU) produce closer results to the observation in terms of curves of <span class="inline-formula"><i>C</i><sub>p</sub>⋅<i>θ</i></span> and <span class="inline-formula"><i>L</i><sub>v</sub>⋅<i>q</i></span>, surface fluxes (<span class="inline-formula"><i>H</i><sub>sfc</sub></span> and <span class="inline-formula"><i>L</i><i>E</i><sub>sfc</sub></span>), entrainment fluxes (<span class="inline-formula"><i>H</i><sub>ent</sub></span>, and <span class="inline-formula"><i>L</i><i>E</i><sub>ent</sub></span>) at site BJ of Nagqu Station (BJ/Nagqu) than those using the Community Land Model (CLM) with BouLac, MYNN, and YSU. The frequency distributions of <span class="inline-formula"><i>H</i><sub>sfc</sub></span>, <span class="inline-formula"><i>L</i><i>E</i><sub>sfc</sub></span>, <span class="inline-formula"><i>H</i><sub>ent</sub></span>, and <span class="inline-formula"><i>L</i><i>E</i><sub>ent</sub></span> in the study area confirm this result. The spatial distributions of simulated <span class="inline-formula"><i>H</i><sub>sfc</sub></span>, <span class="inline-formula"><i>L</i><i>E</i><sub>sfc</sub></span>, <span class="inline-formula"><i>H</i><sub>ent</sub></span>, and <span class="inline-formula"><i>L</i><i>E</i><sub>ent</sub></span>, using WRF with Noah and BouLac, suggest that the spatial distributions of <span class="inline-formula"><i>H</i><sub>sfc</sub></span> and <span class="inline-formula"><i>L</i><i>E</i><sub>sfc</sub></span> in the study area are consistent with that of soil moisture, but the spatial distributions of <span class="inline-formula"><i>H</i><sub>ent</sub></span> and <span class="inline-formula"><i>L</i><i>E</i><sub>ent</sub></span> are quite different from that of soil moisture. A close examination of the relationship between entrainment fluxes and cloud water content (<span class="inline-formula"><i>Q</i><sub>Cloud</sub></span>) reveals that the grids with small <span class="inline-formula"><i>H</i><sub>ent</sub></span> and large <span class="inline-formula"><i>L</i><i>E</i><sub>ent</sub></span> tend to have high <span class="inline-formula"><i>Q</i><sub>Cloud</sub></span> and <span class="inline-formula"><i>H</i><sub>sfc</sub></span>, suggesting that high <span class="inline-formula"><i>H</i><sub>sfc</sub></span> is conducive to convective cloud formation, which leads to small <span class="inline-formula"><i>H</i><sub>ent</sub></span> and large <span class="inline-formula"><i>L</i><i>E</i><sub>ent</sub></span>. A sensitivity analysis of LoCo to the soil moisture at site BJ/Nagqu indicates that, on a sunny day, an increase in soil moisture leads to an increase in <span class="inline-formula"><i>L</i><i>E</i><sub>sfc</sub></span> but decreases in <span class="inline-formula"><i>H</i><sub>sfc</sub></span>, <span class="inline-formula"><i>H</i><sub>ent</sub></span>, and <span class="inline-formula"><i>L</i><i>E</i><sub>ent</sub></span>. The sensitivity of the relationship between simulated maximum daytime PBL height (PBLH) and mean daytime evapotranspiration (ET) in the study area to soil moisture indicates the rate at which the maximum daytime PBLH decreases with the mean ET increase as the initial soil moisture goes up. The analysis of simulated <span class="inline-formula"><i>H</i><sub>sfc</sub></span>, <span class="inline-formula"><i>L</i><i>E</i><sub>sfc</sub></span>, <span class="inline-formula"><i>H</i><sub>ent</sub></span>, and <span class="inline-formula"><i>L</i><i>E</i><sub>ent</sub></span> under different soil moisture conditions reveals that the frequency of <span class="inline-formula"><i>H</i><sub>ent</sub></span> ranging from 80 to 240 W m<span class="inline-formula"><sup>−2</sup></span> and the frequency of <span class="inline-formula"><i>L</i><i>E</i><sub>ent</sub></span> ranging from <span class="inline-formula">−240</span> to <span class="inline-formula">−90</span> W m<span class="inline-formula"><sup>−2</sup></span> both increase as the initial soil moisture increases. Coupled with the changes in <span class="inline-formula"><i>Q</i><sub>Cloud</sub></span>, the changes in <span class="inline-formula"><i>H</i><sub>ent</sub></span> and <span class="inline-formula"><i>L</i><i>E</i><sub>ent</sub></span> as the initial soil moisture increases indicate that the rise in soil moisture leads to an increase in the cloud amount but a decrease in <span class="inline-formula"><i>Q</i><sub>Cloud</sub></span>.</p>https://hess.copernicus.org/articles/24/5937/2020/hess-24-5937-2020.pdf
spellingShingle G. Sun
G. Sun
G. Sun
Z. Hu
Y. Ma
Y. Ma
Z. Xie
J. Wang
S. Yang
S. Yang
S. Yang
Simulation analysis of local land atmosphere coupling in rainy season over a typical underlying surface in the Tibetan Plateau
Hydrology and Earth System Sciences
title Simulation analysis of local land atmosphere coupling in rainy season over a typical underlying surface in the Tibetan Plateau
title_full Simulation analysis of local land atmosphere coupling in rainy season over a typical underlying surface in the Tibetan Plateau
title_fullStr Simulation analysis of local land atmosphere coupling in rainy season over a typical underlying surface in the Tibetan Plateau
title_full_unstemmed Simulation analysis of local land atmosphere coupling in rainy season over a typical underlying surface in the Tibetan Plateau
title_short Simulation analysis of local land atmosphere coupling in rainy season over a typical underlying surface in the Tibetan Plateau
title_sort simulation analysis of local land atmosphere coupling in rainy season over a typical underlying surface in the tibetan plateau
url https://hess.copernicus.org/articles/24/5937/2020/hess-24-5937-2020.pdf
work_keys_str_mv AT gsun simulationanalysisoflocallandatmospherecouplinginrainyseasonoveratypicalunderlyingsurfaceinthetibetanplateau
AT gsun simulationanalysisoflocallandatmospherecouplinginrainyseasonoveratypicalunderlyingsurfaceinthetibetanplateau
AT gsun simulationanalysisoflocallandatmospherecouplinginrainyseasonoveratypicalunderlyingsurfaceinthetibetanplateau
AT zhu simulationanalysisoflocallandatmospherecouplinginrainyseasonoveratypicalunderlyingsurfaceinthetibetanplateau
AT yma simulationanalysisoflocallandatmospherecouplinginrainyseasonoveratypicalunderlyingsurfaceinthetibetanplateau
AT yma simulationanalysisoflocallandatmospherecouplinginrainyseasonoveratypicalunderlyingsurfaceinthetibetanplateau
AT zxie simulationanalysisoflocallandatmospherecouplinginrainyseasonoveratypicalunderlyingsurfaceinthetibetanplateau
AT jwang simulationanalysisoflocallandatmospherecouplinginrainyseasonoveratypicalunderlyingsurfaceinthetibetanplateau
AT syang simulationanalysisoflocallandatmospherecouplinginrainyseasonoveratypicalunderlyingsurfaceinthetibetanplateau
AT syang simulationanalysisoflocallandatmospherecouplinginrainyseasonoveratypicalunderlyingsurfaceinthetibetanplateau
AT syang simulationanalysisoflocallandatmospherecouplinginrainyseasonoveratypicalunderlyingsurfaceinthetibetanplateau