A web-based land surface remote sensing products validation system (LAPVAS): application to albedo product

Quantitative remote sensing product (QRSP) validation is a complex process to assess the accuracy and uncertainty independently using reference data with multiple land cover types and long-time series. A web-based system named as LAnd surface remote sensing Product VAlidation system (LAPVAS) is desc...

Full description

Bibliographic Details
Main Authors: Xingwen Lin, Jianguang Wen, Yong Tang, Mingguo Ma, Dongqin You, Baocheng Dou, Xiaodan Wu, Xiaobo Zhu, Qing Xiao, Qinghuo Liu
Format: Article
Language:English
Published: Taylor & Francis Group 2018-03-01
Series:International Journal of Digital Earth
Subjects:
Online Access:http://dx.doi.org/10.1080/17538947.2017.1320593
_version_ 1797678608709320704
author Xingwen Lin
Jianguang Wen
Yong Tang
Mingguo Ma
Dongqin You
Baocheng Dou
Xiaodan Wu
Xiaobo Zhu
Qing Xiao
Qinghuo Liu
author_facet Xingwen Lin
Jianguang Wen
Yong Tang
Mingguo Ma
Dongqin You
Baocheng Dou
Xiaodan Wu
Xiaobo Zhu
Qing Xiao
Qinghuo Liu
author_sort Xingwen Lin
collection DOAJ
description Quantitative remote sensing product (QRSP) validation is a complex process to assess the accuracy and uncertainty independently using reference data with multiple land cover types and long-time series. A web-based system named as LAnd surface remote sensing Product VAlidation system (LAPVAS) is described in this paper, which is used to implement the QRSPs validation process automatically. The LAPAVS has two subsystems, the Validation Databases Subsystem and the Accuracy Evaluation Subsystem. Three functions have been implemented by the two subsystems for a comprehensive QRSP validation: (1) a standardized processing of reference data and storage of these data in validation databases; (2) a consistent and comprehensive validation procedure to assess the QRSPs’ accuracy and uncertainty; and (3) a visual process customization tool with which the users can register new validation data, host new reference data, and readjust the validation workflows for the QRSP accuracy assessment. In LAPVAS, more than 100 GB of reference data warehoused in validation databases for 13 types of QRSPs’ validation. One of the key QRSPs, land surface albedo, is selected as an example to illustrate the application of LAPVAS. It is demonstrated that the LAPVAS has a good performance in the land surface remote sensing product validation.
first_indexed 2024-03-11T23:02:22Z
format Article
id doaj.art-35440893307c4bf8aa86c0470db3e6c3
institution Directory Open Access Journal
issn 1753-8947
1753-8955
language English
last_indexed 2024-03-11T23:02:22Z
publishDate 2018-03-01
publisher Taylor & Francis Group
record_format Article
series International Journal of Digital Earth
spelling doaj.art-35440893307c4bf8aa86c0470db3e6c32023-09-21T14:38:05ZengTaylor & Francis GroupInternational Journal of Digital Earth1753-89471753-89552018-03-0111330832810.1080/17538947.2017.13205931320593A web-based land surface remote sensing products validation system (LAPVAS): application to albedo productXingwen Lin0Jianguang Wen1Yong Tang2Mingguo Ma3Dongqin You4Baocheng Dou5Xiaodan Wu6Xiaobo Zhu7Qing Xiao8Qinghuo Liu9Chinese Academy of SciencesChinese Academy of SciencesChinese Academy of SciencesSouthwest UniversityChinese Academy of SciencesBeijing Normal UniversityChinese Academy of SciencesSouthwest UniversityChinese Academy of SciencesChinese Academy of SciencesQuantitative remote sensing product (QRSP) validation is a complex process to assess the accuracy and uncertainty independently using reference data with multiple land cover types and long-time series. A web-based system named as LAnd surface remote sensing Product VAlidation system (LAPVAS) is described in this paper, which is used to implement the QRSPs validation process automatically. The LAPAVS has two subsystems, the Validation Databases Subsystem and the Accuracy Evaluation Subsystem. Three functions have been implemented by the two subsystems for a comprehensive QRSP validation: (1) a standardized processing of reference data and storage of these data in validation databases; (2) a consistent and comprehensive validation procedure to assess the QRSPs’ accuracy and uncertainty; and (3) a visual process customization tool with which the users can register new validation data, host new reference data, and readjust the validation workflows for the QRSP accuracy assessment. In LAPVAS, more than 100 GB of reference data warehoused in validation databases for 13 types of QRSPs’ validation. One of the key QRSPs, land surface albedo, is selected as an example to illustrate the application of LAPVAS. It is demonstrated that the LAPVAS has a good performance in the land surface remote sensing product validation.http://dx.doi.org/10.1080/17538947.2017.1320593remote sensingvalidationsystemlapvasuncertainty informationalbedo
spellingShingle Xingwen Lin
Jianguang Wen
Yong Tang
Mingguo Ma
Dongqin You
Baocheng Dou
Xiaodan Wu
Xiaobo Zhu
Qing Xiao
Qinghuo Liu
A web-based land surface remote sensing products validation system (LAPVAS): application to albedo product
International Journal of Digital Earth
remote sensing
validation
system
lapvas
uncertainty information
albedo
title A web-based land surface remote sensing products validation system (LAPVAS): application to albedo product
title_full A web-based land surface remote sensing products validation system (LAPVAS): application to albedo product
title_fullStr A web-based land surface remote sensing products validation system (LAPVAS): application to albedo product
title_full_unstemmed A web-based land surface remote sensing products validation system (LAPVAS): application to albedo product
title_short A web-based land surface remote sensing products validation system (LAPVAS): application to albedo product
title_sort web based land surface remote sensing products validation system lapvas application to albedo product
topic remote sensing
validation
system
lapvas
uncertainty information
albedo
url http://dx.doi.org/10.1080/17538947.2017.1320593
work_keys_str_mv AT xingwenlin awebbasedlandsurfaceremotesensingproductsvalidationsystemlapvasapplicationtoalbedoproduct
AT jianguangwen awebbasedlandsurfaceremotesensingproductsvalidationsystemlapvasapplicationtoalbedoproduct
AT yongtang awebbasedlandsurfaceremotesensingproductsvalidationsystemlapvasapplicationtoalbedoproduct
AT mingguoma awebbasedlandsurfaceremotesensingproductsvalidationsystemlapvasapplicationtoalbedoproduct
AT dongqinyou awebbasedlandsurfaceremotesensingproductsvalidationsystemlapvasapplicationtoalbedoproduct
AT baochengdou awebbasedlandsurfaceremotesensingproductsvalidationsystemlapvasapplicationtoalbedoproduct
AT xiaodanwu awebbasedlandsurfaceremotesensingproductsvalidationsystemlapvasapplicationtoalbedoproduct
AT xiaobozhu awebbasedlandsurfaceremotesensingproductsvalidationsystemlapvasapplicationtoalbedoproduct
AT qingxiao awebbasedlandsurfaceremotesensingproductsvalidationsystemlapvasapplicationtoalbedoproduct
AT qinghuoliu awebbasedlandsurfaceremotesensingproductsvalidationsystemlapvasapplicationtoalbedoproduct
AT xingwenlin webbasedlandsurfaceremotesensingproductsvalidationsystemlapvasapplicationtoalbedoproduct
AT jianguangwen webbasedlandsurfaceremotesensingproductsvalidationsystemlapvasapplicationtoalbedoproduct
AT yongtang webbasedlandsurfaceremotesensingproductsvalidationsystemlapvasapplicationtoalbedoproduct
AT mingguoma webbasedlandsurfaceremotesensingproductsvalidationsystemlapvasapplicationtoalbedoproduct
AT dongqinyou webbasedlandsurfaceremotesensingproductsvalidationsystemlapvasapplicationtoalbedoproduct
AT baochengdou webbasedlandsurfaceremotesensingproductsvalidationsystemlapvasapplicationtoalbedoproduct
AT xiaodanwu webbasedlandsurfaceremotesensingproductsvalidationsystemlapvasapplicationtoalbedoproduct
AT xiaobozhu webbasedlandsurfaceremotesensingproductsvalidationsystemlapvasapplicationtoalbedoproduct
AT qingxiao webbasedlandsurfaceremotesensingproductsvalidationsystemlapvasapplicationtoalbedoproduct
AT qinghuoliu webbasedlandsurfaceremotesensingproductsvalidationsystemlapvasapplicationtoalbedoproduct