Summary: | In practical situations, we often have to handle programming problems involving indeterminate information. Building on the concepts of indeterminacy I and neutrosophic number (NN) (z = p + qI for p, q ∈ ℝ), this paper introduces some basic operations of NNs and concepts of NN nonlinear functions and inequalities. These functions and/or inequalities contain indeterminacy I and naturally lead to a formulation of NN nonlinear programming (NN-NP). These techniques include NN nonlinear optimization models for unconstrained and constrained problems and their general solution methods. Additionally, numerical examples are provided to show the effectiveness of the proposed NN-NP methods. It is obvious that the NN-NP problems usually yield NN optimal solutions, but not always. The possible optimal ranges of the decision variables and NN objective function are indicated when the indeterminacy I is considered for possible interval ranges in real situations.
|