The Effect of Alginate Concentration on Crystallinity, Morphology, and Thermal Stability Properties of Hydroxyapatite/Alginate Composite

Hydroxyapatite (HAp) has been used for various applications such as orthopedics, drug delivery material, and bone tissue engineering. It is well known that HAp has a good biocompatibility and osteoconductivity, so HAp can be used in biomedical applications. Hydroxyapatite can be combined with other...

Full description

Bibliographic Details
Main Authors: Wulandari Wulandari, Dini Muthiah Islami, Diana Vanda Wellia, Emriadi Emriadi, Vivi Sisca, Novesar Jamarun
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/15/3/614
Description
Summary:Hydroxyapatite (HAp) has been used for various applications such as orthopedics, drug delivery material, and bone tissue engineering. It is well known that HAp has a good biocompatibility and osteoconductivity, so HAp can be used in biomedical applications. Hydroxyapatite can be combined with other materials, in particular polymer, to expand its range of applications. In this study, the polymer that will be used as a support for the HAp composite is alginate (Alg). The HAp/Alg composite has been synthesized by the precipitation method. The XRD results show that the crystal system of HAp was hexagonal. The spheric-like shaped particles can be observed from SEM images, and particle size distribution spread from 400 to 1100 nm. The EDS spectrum exhibited the peak of Ca, C, P, and O elements, indicating that alginate had interacted with hydroxyapatite in the synthesized composite. The as-fabricated composite showed not only good crystallinity but also high thermal resistance. Thermogravimetric-differential thermal analysis (TGA-DTA) revealed that the HAp/Alg composites have a constant weight at 750 °C, so it might be applied in advanced applications such as bioimaging, drug carrier, and other cancer treatments.
ISSN:2073-4360