Approximation of fixed points for a continuous representation of nonexpansive mappings in Hilbert spaces

This paper introduces an implicit scheme for a   continuous representation of nonexpansive mappings on a closed convex subset of a Hilbert space with respect to a   sequence of invariant means defined on an appropriate space of bounded, continuous real valued functions of the semigroup.   The main r...

সম্পূর্ণ বিবরণ

গ্রন্থ-পঞ্জীর বিবরন
প্রধান লেখক: Ebrahim Soori
বিন্যাস: প্রবন্ধ
ভাষা:English
প্রকাশিত: University of Maragheh 2017-04-01
মালা:Sahand Communications in Mathematical Analysis
বিষয়গুলি:
অনলাইন ব্যবহার করুন:http://scma.maragheh.ac.ir/article_22988_6164b5942bd9d9914849f5c337fac6fa.pdf
বিবরন
সংক্ষিপ্ত:This paper introduces an implicit scheme for a   continuous representation of nonexpansive mappings on a closed convex subset of a Hilbert space with respect to a   sequence of invariant means defined on an appropriate space of bounded, continuous real valued functions of the semigroup.   The main result is to    prove the strong convergence of the proposed implicit scheme to the unique solution of the variational inequality on the solution of systems of equilibrium problems and the common fixed points of a sequence of nonexpansive mappings and a continuous representation of nonexpansive mappings.
আইএসএসএন:2322-5807
2423-3900