Characterization of PVDF/Graphene Nanocomposite Membranes for Water Desalination with Enhanced Antifungal Activity

Seawater desalination is a worldwide concern for the sustainable production of drinking water. In this regard, membrane distillation (MD) has shown the potential for effective brine treatment. However, the lack of appropriate MD membranes limits its industrial expansion since they experience fouling...

Full description

Bibliographic Details
Main Authors: Emilia Gontarek-Castro, Maria Krystyna Rybarczyk, Roberto Castro-Muñoz, Monica Morales-Jiménez, Blanca Barragán-Huerta, Marek Lieder
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/13/9/1279
Description
Summary:Seawater desalination is a worldwide concern for the sustainable production of drinking water. In this regard, membrane distillation (MD) has shown the potential for effective brine treatment. However, the lack of appropriate MD membranes limits its industrial expansion since they experience fouling and wetting issues. Therefore, hydrophobic membranes are promising candidates to successfully deal with such phenomena that are typical for commercially available membranes. Here, several graphene/polyvinylidene (PVDF_G) membranes with different graphene loading (0–10 wt%) were prepared through a phase inversion method. After full characterization of the resulting membranes, the surface revealed that the well-dispersed graphene in the polymer matrix (0.33 and 0.5 wt% graphene loading) led to excellent water repellence together with a rough structure, and a large effective surface area. Importantly, antifungal activity tests of films indicated an increase in the inhibition percentage for PVDF_G membranes against the <i>Curvularia</i> sp. fungal strain. However, the antifungal surface properties were found to be the synergistic result of graphene toxicity and surface topography.
ISSN:2073-4441