Inductive Determination of Rate-Reaction Equation Parameters for Dislocation Structure Formation Using Artificial Neural Network

The reaction–diffusion equation approach, which solves differential equations of the development of density distributions of mobile and immobile dislocations under mutual interactions, is a method widely used to model the dislocation structure formation. A challenge in the approach is the difficulty...

Full description

Bibliographic Details
Main Authors: Yoshitaka Umeno, Emi Kawai, Atsushi Kubo, Hiroyuki Shima, Takashi Sumigawa
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/16/5/2108
_version_ 1797614870878748672
author Yoshitaka Umeno
Emi Kawai
Atsushi Kubo
Hiroyuki Shima
Takashi Sumigawa
author_facet Yoshitaka Umeno
Emi Kawai
Atsushi Kubo
Hiroyuki Shima
Takashi Sumigawa
author_sort Yoshitaka Umeno
collection DOAJ
description The reaction–diffusion equation approach, which solves differential equations of the development of density distributions of mobile and immobile dislocations under mutual interactions, is a method widely used to model the dislocation structure formation. A challenge in the approach is the difficulty in the determination of appropriate parameters in the governing equations because deductive (bottom-up) determination for such a phenomenological model is problematic. To circumvent this problem, we propose an inductive approach utilizing the machine-learning method to search a parameter set that produces simulation results consistent with experiments. Using a thin film model, we performed numerical simulations based on the reaction–diffusion equations for various sets of input parameters to obtain dislocation patterns. The resulting patterns are represented by the following two parameters; the number of dislocation walls (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>p</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula>), and the average width of the walls (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>p</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula>). Then, we constructed an artificial neural network (ANN) model to map between the input parameters and the output dislocation patterns. The constructed ANN model was found to be able to predict dislocation patterns; i.e., average errors in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>p</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>p</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula> for test data having 10% deviation from the training data were within 7% of the average magnitude of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>p</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>p</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula>. The proposed scheme enables us to find appropriate constitutive laws that lead to reasonable simulation results, once realistic observations of the phenomenon in question are provided. This approach provides a new scheme to bridge models for different length scales in the hierarchical multiscale simulation framework.
first_indexed 2024-03-11T07:18:23Z
format Article
id doaj.art-35733db9a3b746a5ba275abf2971371e
institution Directory Open Access Journal
issn 1996-1944
language English
last_indexed 2024-03-11T07:18:23Z
publishDate 2023-03-01
publisher MDPI AG
record_format Article
series Materials
spelling doaj.art-35733db9a3b746a5ba275abf2971371e2023-11-17T08:07:26ZengMDPI AGMaterials1996-19442023-03-01165210810.3390/ma16052108Inductive Determination of Rate-Reaction Equation Parameters for Dislocation Structure Formation Using Artificial Neural NetworkYoshitaka Umeno0Emi Kawai1Atsushi Kubo2Hiroyuki Shima3Takashi Sumigawa4Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, JapanInstitute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, JapanInstitute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, JapanDepartment of Environmental Sciences, University of Yamanashi, 4-4-37, Takeda, Kofu, Yamanashi 400-8510, JapanDepartment of Energy Conversion Science, Graduate School of Energy Science, Kyoto University, Sakyo-ku, Kyoto 606-8501, JapanThe reaction–diffusion equation approach, which solves differential equations of the development of density distributions of mobile and immobile dislocations under mutual interactions, is a method widely used to model the dislocation structure formation. A challenge in the approach is the difficulty in the determination of appropriate parameters in the governing equations because deductive (bottom-up) determination for such a phenomenological model is problematic. To circumvent this problem, we propose an inductive approach utilizing the machine-learning method to search a parameter set that produces simulation results consistent with experiments. Using a thin film model, we performed numerical simulations based on the reaction–diffusion equations for various sets of input parameters to obtain dislocation patterns. The resulting patterns are represented by the following two parameters; the number of dislocation walls (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>p</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula>), and the average width of the walls (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>p</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula>). Then, we constructed an artificial neural network (ANN) model to map between the input parameters and the output dislocation patterns. The constructed ANN model was found to be able to predict dislocation patterns; i.e., average errors in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>p</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>p</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula> for test data having 10% deviation from the training data were within 7% of the average magnitude of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>p</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>p</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula>. The proposed scheme enables us to find appropriate constitutive laws that lead to reasonable simulation results, once realistic observations of the phenomenon in question are provided. This approach provides a new scheme to bridge models for different length scales in the hierarchical multiscale simulation framework.https://www.mdpi.com/1996-1944/16/5/2108reaction–diffusion modeldislocation structurefatigueartificial neural networkmultiscale simulationmachine learning
spellingShingle Yoshitaka Umeno
Emi Kawai
Atsushi Kubo
Hiroyuki Shima
Takashi Sumigawa
Inductive Determination of Rate-Reaction Equation Parameters for Dislocation Structure Formation Using Artificial Neural Network
Materials
reaction–diffusion model
dislocation structure
fatigue
artificial neural network
multiscale simulation
machine learning
title Inductive Determination of Rate-Reaction Equation Parameters for Dislocation Structure Formation Using Artificial Neural Network
title_full Inductive Determination of Rate-Reaction Equation Parameters for Dislocation Structure Formation Using Artificial Neural Network
title_fullStr Inductive Determination of Rate-Reaction Equation Parameters for Dislocation Structure Formation Using Artificial Neural Network
title_full_unstemmed Inductive Determination of Rate-Reaction Equation Parameters for Dislocation Structure Formation Using Artificial Neural Network
title_short Inductive Determination of Rate-Reaction Equation Parameters for Dislocation Structure Formation Using Artificial Neural Network
title_sort inductive determination of rate reaction equation parameters for dislocation structure formation using artificial neural network
topic reaction–diffusion model
dislocation structure
fatigue
artificial neural network
multiscale simulation
machine learning
url https://www.mdpi.com/1996-1944/16/5/2108
work_keys_str_mv AT yoshitakaumeno inductivedeterminationofratereactionequationparametersfordislocationstructureformationusingartificialneuralnetwork
AT emikawai inductivedeterminationofratereactionequationparametersfordislocationstructureformationusingartificialneuralnetwork
AT atsushikubo inductivedeterminationofratereactionequationparametersfordislocationstructureformationusingartificialneuralnetwork
AT hiroyukishima inductivedeterminationofratereactionequationparametersfordislocationstructureformationusingartificialneuralnetwork
AT takashisumigawa inductivedeterminationofratereactionequationparametersfordislocationstructureformationusingartificialneuralnetwork