Interaction between Screw Dislocation and Interfacial Crack in Fine-Grained Piezoelectric Coatings under Steady-State Thermal Loading

The mechanical behavior of fine-grained piezoelectric/substrate structure with screw dislocation and interface edge crack under the coupling action of heat, force and electricity are studied. Using the mapping function method, firstly, the finite area plane is transformed into the right semi-infinit...

Full description

Bibliographic Details
Main Authors: Shuaishuai Hu, Junlin Li
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/24/11922
Description
Summary:The mechanical behavior of fine-grained piezoelectric/substrate structure with screw dislocation and interface edge crack under the coupling action of heat, force and electricity are studied. Using the mapping function method, firstly, the finite area plane is transformed into the right semi-infinite plane, then the expression of the temperature field is given with the help of the complex function, and then the temperature field of the problem is achieved. By constructing the general solution of the governing equation with temperature function, the analytical expression of the image force is derived. Finally, the effects of material parameters, temperature gradient, coating thickness and crack size on image force are analyzed by numerical examples. The results show that the temperature gradient has a very significant effect on the image force, and thicker coating is conducive to the stability of dislocation and interface crack.
ISSN:2076-3417