Summary: | Polymers are becoming a very popular tool in the crystallization of different compounds. In this work, a new method of crystallization is proposed using stimuli-responsive star polymer in order to obtain hollow structure crystals. In these experiments, amphiphilic copolymer of acrylic acid (AA) and methyl acrylate (MA) were used for isohydric crystallization via they cooling of KCl in deionized water solution. The experiments were realized in quartz cuvette with a magnetic stirrer using a specialized spectrometer with precise temperature control. The crystallization course was monitored by the absorbance readings and analysis of the nucleation energetic effect. It was proved that the moment of the polymer’s phase transition occurrence had an important role in the crystal growth process. On the other hand, the occurrence of phase transition did not trigger the nucleation. The supercoolings achieved in the presence of the polymer were significantly higher compared to pure salt crystallization. On the basis of analysis of Particle Size Distribution (PSD) and Critical Aggregation Concentration (CAC) of the polymer, it was proposed that the hydrophobic particles of macromolecules created from polymeric aggregates served as templates for the formation of hollow crystals. Their purity was verified using thermogravimetric analysis (TGA), 1H NMR, and XRD. Only trace amounts of polymer were found in the crystalline product.
|