Qualitative behavior of a rational difference equation <inline-formula><graphic file="1687-1847-2011-6-i1.gif"/></inline-formula>
<p>Abstract</p> <p>This article is concerned with the following rational difference equation <it>y</it><sub><it>n</it>+1 </sub>= (<it>y</it><sub><it>n </it></sub>+ <it>y</it><sub><it>n&l...
Main Authors: | Qian Xiao, Qi-hong Shi |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2011-01-01
|
Series: | Advances in Difference Equations |
Subjects: | |
Online Access: | http://www.advancesindifferenceequations.com/content/2011/1/6 |
Similar Items
-
Results and Conjectures about Order <inline-formula> <graphic file="1687-1847-2009-134749-i1.gif"/></inline-formula> Lyness' Difference Equation <inline-formula> <graphic file="1687-1847-2009-134749-i2.gif"/></inline-formula> in <inline-formula> <graphic file="1687-1847-2009-134749-i3.gif"/></inline-formula>, with a Particular Study of the Case <inline-formula> <graphic file="1687-1847-2009-134749-i4.gif"/></inline-formula>
by: Rogalski M, et al.
Published: (2009-01-01) -
Some Results on <inline-formula><graphic file="1687-1847-2011-394584-i1.gif"/></inline-formula>-Times Integrated <inline-formula><graphic file="1687-1847-2011-394584-i2.gif"/></inline-formula>-Regularized Semigroups
by: Li Fang, et al.
Published: (2011-01-01) -
<inline-formula> <graphic file="1687-1847-2008-815750-i1.gif"/></inline-formula>-Genocchi Numbers and Polynomials Associated with <inline-formula> <graphic file="1687-1847-2008-815750-i2.gif"/></inline-formula>-Genocchi-Type <inline-formula> <graphic file="1687-1847-2008-815750-i3.gif"/></inline-formula>-Functions
by: Cangul IsmailNaci, et al.
Published: (2008-01-01) -
On Boundedness of Solutions of the Difference Equation <inline-formula><graphic file="1687-1847-2009-463169-i1.gif"/></inline-formula> for <inline-formula><graphic file="1687-1847-2009-463169-i2.gif"/></inline-formula>
by: Xi Hongjian, et al.
Published: (2009-01-01) -
A New Approach to <inline-formula><graphic file="1687-1847-2010-951764-i1.gif"/></inline-formula>-Bernoulli Numbers and <inline-formula><graphic file="1687-1847-2010-951764-i2.gif"/></inline-formula>-Bernoulli Polynomials Related to <inline-formula><graphic file="1687-1847-2010-951764-i3.gif"/></inline-formula>-Bernstein Polynomials
by: Açikgöz Mehmet, et al.
Published: (2010-01-01)