Derivative-Free Iterative Schemes for Multiple Roots of Nonlinear Functions

The construction of derivative-free iterative methods for approximating multiple roots of a nonlinear equation is a relatively new line of research. This paper presents a novel family of one-parameter second-order techniques. Our schemes are free from derivatives and have been designed to find multi...

Full description

Bibliographic Details
Main Authors: Himani Arora, Alicia Cordero, Juan R. Torregrosa, Ramandeep Behl, Sattam Alharbi
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/9/1530
Description
Summary:The construction of derivative-free iterative methods for approximating multiple roots of a nonlinear equation is a relatively new line of research. This paper presents a novel family of one-parameter second-order techniques. Our schemes are free from derivatives and have been designed to find multiple roots (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>≥</mo><mn>2</mn></mrow></semantics></math></inline-formula>). The new techniques involve the weight function approach. The convergence analysis for the new family is presented in the main theorem. In addition, some special cases of the new class are discussed. We also illustrate the applicability of our methods on van der Waals, Planck’s radiation, root clustering, and eigenvalue problems. We also contrast them with the known methods. Finally, the dynamical study of iterative schemes also provides a good overview of their stability.
ISSN:2227-7390