Impact Performance Evaluation of a Crash Cushion Design Using Finite Element Simulation and Full-Scale Crash Testing
Crash cushions are designed to gradually absorb the kinetic energy of an impacting vehicle and bring it to a controlled stop within an acceptable distance while maintaining a limited amount of deceleration on the occupants. These cushions are used to protect errant vehicles from hitting rigid object...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-11-01
|
Series: | Safety |
Subjects: | |
Online Access: | https://www.mdpi.com/2313-576X/4/4/48 |
_version_ | 1828437947431518208 |
---|---|
author | Murat Büyük Ali Osman Atahan Kenan Kurucuoğlu |
author_facet | Murat Büyük Ali Osman Atahan Kenan Kurucuoğlu |
author_sort | Murat Büyük |
collection | DOAJ |
description | Crash cushions are designed to gradually absorb the kinetic energy of an impacting vehicle and bring it to a controlled stop within an acceptable distance while maintaining a limited amount of deceleration on the occupants. These cushions are used to protect errant vehicles from hitting rigid objects, such as poles and barriers located at exit locations on roads. Impact performance evaluation of crash cushions are attained according to an EN 1317-3 standard based on various speed limits and impact angles. Crash cushions can be designed to absorb the energy of an impacting vehicle by using different material deformation mechanisms, such as metal plasticity supported by airbag folding or damping. In this study, a new crash cushion system, called the ulukur crash cushion (UCC), is developed by using linear, low-density polyethylene (LLDPE) containers supported by embedded plastic energy-absorbing tubes as dampers. Steel cables are used to provide anchorage to the design. The crashworthiness of the system was evaluated both numerically and experimentally. The finite element model of the design was developed and solved using LS-DYNA (971, LSTC, Livermore, CA, USA), in which the impact performance was evaluated considering the EN 1317 standard. Following the simulations, full-scale crash tests were performed to determine the performance of the design in containing and redirecting the impacting vehicle. Both the simulations and crash tests showed acceptable agreement. Further crash tests are planned to fully evaluate the crashworthiness of the new crash cushion system. |
first_indexed | 2024-12-10T19:56:19Z |
format | Article |
id | doaj.art-358a37570d0d49098db7751b8bce039a |
institution | Directory Open Access Journal |
issn | 2313-576X |
language | English |
last_indexed | 2024-12-10T19:56:19Z |
publishDate | 2018-11-01 |
publisher | MDPI AG |
record_format | Article |
series | Safety |
spelling | doaj.art-358a37570d0d49098db7751b8bce039a2022-12-22T01:35:39ZengMDPI AGSafety2313-576X2018-11-01444810.3390/safety4040048safety4040048Impact Performance Evaluation of a Crash Cushion Design Using Finite Element Simulation and Full-Scale Crash TestingMurat Büyük0Ali Osman Atahan1Kenan Kurucuoğlu2Department Faculty of Engineering and Natural Sciences, Sabanci University, Main Campus, İstanbul 34956, TurkeyDepartment of Civil Engineering, Istanbul Technical University, Ayazaga Campus, İstanbul 34469, TurkeyUlukur Plastic Traffic Products, İstanbul 34870, TurkeyCrash cushions are designed to gradually absorb the kinetic energy of an impacting vehicle and bring it to a controlled stop within an acceptable distance while maintaining a limited amount of deceleration on the occupants. These cushions are used to protect errant vehicles from hitting rigid objects, such as poles and barriers located at exit locations on roads. Impact performance evaluation of crash cushions are attained according to an EN 1317-3 standard based on various speed limits and impact angles. Crash cushions can be designed to absorb the energy of an impacting vehicle by using different material deformation mechanisms, such as metal plasticity supported by airbag folding or damping. In this study, a new crash cushion system, called the ulukur crash cushion (UCC), is developed by using linear, low-density polyethylene (LLDPE) containers supported by embedded plastic energy-absorbing tubes as dampers. Steel cables are used to provide anchorage to the design. The crashworthiness of the system was evaluated both numerically and experimentally. The finite element model of the design was developed and solved using LS-DYNA (971, LSTC, Livermore, CA, USA), in which the impact performance was evaluated considering the EN 1317 standard. Following the simulations, full-scale crash tests were performed to determine the performance of the design in containing and redirecting the impacting vehicle. Both the simulations and crash tests showed acceptable agreement. Further crash tests are planned to fully evaluate the crashworthiness of the new crash cushion system.https://www.mdpi.com/2313-576X/4/4/48crash cushioncrash testsimulationLS-DYNAEN 1317road safetyenergy absorptionlinear, low-density polyethylene |
spellingShingle | Murat Büyük Ali Osman Atahan Kenan Kurucuoğlu Impact Performance Evaluation of a Crash Cushion Design Using Finite Element Simulation and Full-Scale Crash Testing Safety crash cushion crash test simulation LS-DYNA EN 1317 road safety energy absorption linear, low-density polyethylene |
title | Impact Performance Evaluation of a Crash Cushion Design Using Finite Element Simulation and Full-Scale Crash Testing |
title_full | Impact Performance Evaluation of a Crash Cushion Design Using Finite Element Simulation and Full-Scale Crash Testing |
title_fullStr | Impact Performance Evaluation of a Crash Cushion Design Using Finite Element Simulation and Full-Scale Crash Testing |
title_full_unstemmed | Impact Performance Evaluation of a Crash Cushion Design Using Finite Element Simulation and Full-Scale Crash Testing |
title_short | Impact Performance Evaluation of a Crash Cushion Design Using Finite Element Simulation and Full-Scale Crash Testing |
title_sort | impact performance evaluation of a crash cushion design using finite element simulation and full scale crash testing |
topic | crash cushion crash test simulation LS-DYNA EN 1317 road safety energy absorption linear, low-density polyethylene |
url | https://www.mdpi.com/2313-576X/4/4/48 |
work_keys_str_mv | AT muratbuyuk impactperformanceevaluationofacrashcushiondesignusingfiniteelementsimulationandfullscalecrashtesting AT aliosmanatahan impactperformanceevaluationofacrashcushiondesignusingfiniteelementsimulationandfullscalecrashtesting AT kenankurucuoglu impactperformanceevaluationofacrashcushiondesignusingfiniteelementsimulationandfullscalecrashtesting |