Emission or scattering? Discriminating the origin of responsiveness in AIEgen‐doped smart polymers using the TPE dye
Abstract Aggregation‐induced emission (AIE) luminogens are attractive dyes to probe polymer properties that depend on changes in chain mobility and free volume. When embedded in polymers the restriction of intramolecular motion (RIM) can lead to their photoluminescence quantum yield (PLQY) strong en...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2023-12-01
|
Series: | Aggregate |
Subjects: | |
Online Access: | https://doi.org/10.1002/agt2.373 |
_version_ | 1827580150357688320 |
---|---|
author | Valentina A. Dini Damiano Genovese Cosimo Micheletti Nelsi Zaccheroni Andrea Pucci Chiara Gualandi |
author_facet | Valentina A. Dini Damiano Genovese Cosimo Micheletti Nelsi Zaccheroni Andrea Pucci Chiara Gualandi |
author_sort | Valentina A. Dini |
collection | DOAJ |
description | Abstract Aggregation‐induced emission (AIE) luminogens are attractive dyes to probe polymer properties that depend on changes in chain mobility and free volume. When embedded in polymers the restriction of intramolecular motion (RIM) can lead to their photoluminescence quantum yield (PLQY) strong enhancement if local microviscosity increases (lowering of chain mobility and free volume). Nonetheless, measuring PLQY during stimuli, i.e. heat or mechanical stress, is technically challenging; thus, emission intensity is commonly used instead, assuming its direct correlation with the PLQY. Here, by using fluorescence lifetime as an absolute fluorescence parameter, it is demonstrated that this assumption can be invalid in many commonly encountered conditions. To this aim, different polymers are loaded with tetraphenylenethylene (TPE) and characterized during the application of thermal and mechanical stress and physical aging. Under these conditions, polymer matrix transparency variation is observed, possibly due to local changes in refractive index and to the formation of microfractures. By combining different characterization techniques, it is proved that scattering can affect the apparent emission intensity, while lifetime measurements can be used to ascertain whether the observed phenomenon is due to modifications of the photophysical properties of AIE dyes (RIM effect) or to alterations in the matrix optical properties. |
first_indexed | 2024-03-08T22:14:01Z |
format | Article |
id | doaj.art-35a471153d0440a1ab59b8dddf5400ea |
institution | Directory Open Access Journal |
issn | 2692-4560 |
language | English |
last_indexed | 2024-03-08T22:14:01Z |
publishDate | 2023-12-01 |
publisher | Wiley |
record_format | Article |
series | Aggregate |
spelling | doaj.art-35a471153d0440a1ab59b8dddf5400ea2023-12-19T04:23:02ZengWileyAggregate2692-45602023-12-0146n/an/a10.1002/agt2.373Emission or scattering? Discriminating the origin of responsiveness in AIEgen‐doped smart polymers using the TPE dyeValentina A. Dini0Damiano Genovese1Cosimo Micheletti2Nelsi Zaccheroni3Andrea Pucci4Chiara Gualandi5Department of Chemistry “Giacomo Ciamician” University of Bologna BolognaItalyDepartment of Chemistry “Giacomo Ciamician” University of Bologna BolognaItalyDepartment of Chemistry and Industrial Chemistry University of Pisa PisaItalyDepartment of Chemistry “Giacomo Ciamician” University of Bologna BolognaItalyDepartment of Chemistry and Industrial Chemistry University of Pisa PisaItalyDepartment of Chemistry “Giacomo Ciamician” University of Bologna BolognaItalyAbstract Aggregation‐induced emission (AIE) luminogens are attractive dyes to probe polymer properties that depend on changes in chain mobility and free volume. When embedded in polymers the restriction of intramolecular motion (RIM) can lead to their photoluminescence quantum yield (PLQY) strong enhancement if local microviscosity increases (lowering of chain mobility and free volume). Nonetheless, measuring PLQY during stimuli, i.e. heat or mechanical stress, is technically challenging; thus, emission intensity is commonly used instead, assuming its direct correlation with the PLQY. Here, by using fluorescence lifetime as an absolute fluorescence parameter, it is demonstrated that this assumption can be invalid in many commonly encountered conditions. To this aim, different polymers are loaded with tetraphenylenethylene (TPE) and characterized during the application of thermal and mechanical stress and physical aging. Under these conditions, polymer matrix transparency variation is observed, possibly due to local changes in refractive index and to the formation of microfractures. By combining different characterization techniques, it is proved that scattering can affect the apparent emission intensity, while lifetime measurements can be used to ascertain whether the observed phenomenon is due to modifications of the photophysical properties of AIE dyes (RIM effect) or to alterations in the matrix optical properties.https://doi.org/10.1002/agt2.373AIE luminogensglass transitionmechanochromismphysical agingscatteringsmart polymer |
spellingShingle | Valentina A. Dini Damiano Genovese Cosimo Micheletti Nelsi Zaccheroni Andrea Pucci Chiara Gualandi Emission or scattering? Discriminating the origin of responsiveness in AIEgen‐doped smart polymers using the TPE dye Aggregate AIE luminogens glass transition mechanochromism physical aging scattering smart polymer |
title | Emission or scattering? Discriminating the origin of responsiveness in AIEgen‐doped smart polymers using the TPE dye |
title_full | Emission or scattering? Discriminating the origin of responsiveness in AIEgen‐doped smart polymers using the TPE dye |
title_fullStr | Emission or scattering? Discriminating the origin of responsiveness in AIEgen‐doped smart polymers using the TPE dye |
title_full_unstemmed | Emission or scattering? Discriminating the origin of responsiveness in AIEgen‐doped smart polymers using the TPE dye |
title_short | Emission or scattering? Discriminating the origin of responsiveness in AIEgen‐doped smart polymers using the TPE dye |
title_sort | emission or scattering discriminating the origin of responsiveness in aiegen doped smart polymers using the tpe dye |
topic | AIE luminogens glass transition mechanochromism physical aging scattering smart polymer |
url | https://doi.org/10.1002/agt2.373 |
work_keys_str_mv | AT valentinaadini emissionorscatteringdiscriminatingtheoriginofresponsivenessinaiegendopedsmartpolymersusingthetpedye AT damianogenovese emissionorscatteringdiscriminatingtheoriginofresponsivenessinaiegendopedsmartpolymersusingthetpedye AT cosimomicheletti emissionorscatteringdiscriminatingtheoriginofresponsivenessinaiegendopedsmartpolymersusingthetpedye AT nelsizaccheroni emissionorscatteringdiscriminatingtheoriginofresponsivenessinaiegendopedsmartpolymersusingthetpedye AT andreapucci emissionorscatteringdiscriminatingtheoriginofresponsivenessinaiegendopedsmartpolymersusingthetpedye AT chiaragualandi emissionorscatteringdiscriminatingtheoriginofresponsivenessinaiegendopedsmartpolymersusingthetpedye |