On the capitulation of the $2$-ideal classes of the field Q(\sqrt{pq_1q_2}, i) of type (2, 2, 2)

We study the capitulation of the 2-ideal classes of the field k =Q(\sqrt{p_1p_2q}, \sqrt{-1}), where p_1\equiv p_2\equiv-q\equiv1 \pmod 4  are different primes, in its three quadratic extensions contained in its absolute genus field k^{*} whenever the 2-class group of $\kk$ is of type $(2, 2, 2)$.

Bibliographic Details
Main Authors: Abdelmalek Azizi, Abdelkader Zekhnini, Mohammed Taous
Format: Article
Language:English
Published: Sociedade Brasileira de Matemática 2019-03-01
Series:Boletim da Sociedade Paranaense de Matemática
Subjects:
Online Access:https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/36793
_version_ 1797633482290102272
author Abdelmalek Azizi
Abdelkader Zekhnini
Mohammed Taous
author_facet Abdelmalek Azizi
Abdelkader Zekhnini
Mohammed Taous
author_sort Abdelmalek Azizi
collection DOAJ
description We study the capitulation of the 2-ideal classes of the field k =Q(\sqrt{p_1p_2q}, \sqrt{-1}), where p_1\equiv p_2\equiv-q\equiv1 \pmod 4  are different primes, in its three quadratic extensions contained in its absolute genus field k^{*} whenever the 2-class group of $\kk$ is of type $(2, 2, 2)$.
first_indexed 2024-03-11T11:54:38Z
format Article
id doaj.art-35b313a76b4d439b9a310c0ae3f9415b
institution Directory Open Access Journal
issn 0037-8712
2175-1188
language English
last_indexed 2024-03-11T11:54:38Z
publishDate 2019-03-01
publisher Sociedade Brasileira de Matemática
record_format Article
series Boletim da Sociedade Paranaense de Matemática
spelling doaj.art-35b313a76b4d439b9a310c0ae3f9415b2023-11-08T20:07:44ZengSociedade Brasileira de MatemáticaBoletim da Sociedade Paranaense de Matemática0037-87122175-11882019-03-0138410.5269/bspm.v38i4.36793On the capitulation of the $2$-ideal classes of the field Q(\sqrt{pq_1q_2}, i) of type (2, 2, 2)Abdelmalek Azizi0Abdelkader Zekhnini1Mohammed Taous2Mohammed First University Sciences Faculty Mathematics DepartmentMohammed First university Pluridisciplinary Faculty of NadorMoulay Ismail University Sciences and Techniques Faculty Mathematics DepartmentWe study the capitulation of the 2-ideal classes of the field k =Q(\sqrt{p_1p_2q}, \sqrt{-1}), where p_1\equiv p_2\equiv-q\equiv1 \pmod 4  are different primes, in its three quadratic extensions contained in its absolute genus field k^{*} whenever the 2-class group of $\kk$ is of type $(2, 2, 2)$.https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/36793absolute genus fieldsfundamental systems of units$2$-class groupcapitulationquadratic fieldsbiquadratic fields
spellingShingle Abdelmalek Azizi
Abdelkader Zekhnini
Mohammed Taous
On the capitulation of the $2$-ideal classes of the field Q(\sqrt{pq_1q_2}, i) of type (2, 2, 2)
Boletim da Sociedade Paranaense de Matemática
absolute genus fields
fundamental systems of units
$2$-class group
capitulation
quadratic fields
biquadratic fields
title On the capitulation of the $2$-ideal classes of the field Q(\sqrt{pq_1q_2}, i) of type (2, 2, 2)
title_full On the capitulation of the $2$-ideal classes of the field Q(\sqrt{pq_1q_2}, i) of type (2, 2, 2)
title_fullStr On the capitulation of the $2$-ideal classes of the field Q(\sqrt{pq_1q_2}, i) of type (2, 2, 2)
title_full_unstemmed On the capitulation of the $2$-ideal classes of the field Q(\sqrt{pq_1q_2}, i) of type (2, 2, 2)
title_short On the capitulation of the $2$-ideal classes of the field Q(\sqrt{pq_1q_2}, i) of type (2, 2, 2)
title_sort on the capitulation of the 2 ideal classes of the field q sqrt pq 1q 2 i of type 2 2 2
topic absolute genus fields
fundamental systems of units
$2$-class group
capitulation
quadratic fields
biquadratic fields
url https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/36793
work_keys_str_mv AT abdelmalekazizi onthecapitulationofthe2idealclassesofthefieldqsqrtpq1q2ioftype222
AT abdelkaderzekhnini onthecapitulationofthe2idealclassesofthefieldqsqrtpq1q2ioftype222
AT mohammedtaous onthecapitulationofthe2idealclassesofthefieldqsqrtpq1q2ioftype222