Metal-Free Heptazine-Based Porous Polymeric Network as Highly Efficient Catalyst for CO2 Capture and Conversion

The capture and catalytic conversion of CO2 into value-added chemicals is a promising and sustainable approach to tackle the global warming and energy crisis. The nitrogen-rich porous organic polymers are excellent materials for CO2 capture and separation. Herein, we present a nitrogen-rich heptazin...

Full description

Bibliographic Details
Main Authors: Neha Sharma, Bharat Ugale, Sunil Kumar, Kamalakannan Kailasam
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-10-01
Series:Frontiers in Chemistry
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fchem.2021.737511/full
Description
Summary:The capture and catalytic conversion of CO2 into value-added chemicals is a promising and sustainable approach to tackle the global warming and energy crisis. The nitrogen-rich porous organic polymers are excellent materials for CO2 capture and separation. Herein, we present a nitrogen-rich heptazine-based microporous polymer for the cycloaddition reaction of CO2 with epoxides in the absence of metals and solvents. HMP-TAPA, being rich in the nitrogen site, showed a high CO2 uptake of 106.7 mg/g with an IAST selectivity of 30.79 toward CO2 over N2. Furthermore, HMP-TAPA showed high chemical and water stability without loss of any structural integrity. Besides CO2 sorption, the catalytic activity of HMP-TAPA was checked for the cycloaddition of CO2 and terminal epoxides, resulting in cyclic carbonate with high conversion (98%). They showed remarkable recyclability up to 5 cycles without loss of activity. Overall, this study represents a rare demonstration of the rational design of POPs (HMP-TAPA) for multiple applications.
ISSN:2296-2646