Summary: | Poor groundwater quality in household wells is hypothesized as being a potential contributor to chronic kidney disease of unknown etiology (CKDu) in Sri Lanka. However, the influencing factors of groundwater quality in Sri Lanka are rarely investigated at a national scale. Here, the spatial characteristics of groundwater geochemistry in Sri Lanka were described. The relationships of groundwater quality parameters with environmental factors, including lithology, land use, and climatic conditions, were further examined to identify the natural and anthropogenic controlling factors of groundwater quality in Sri Lanka. The results showed that groundwater geochemistry in Sri Lanka exhibited significant spatial heterogeneity. The high concentrations of NO<sub>3</sub><sup>−</sup> were found in the districts that have a higher percentage of agricultural lands, especially in the regions in the coastal zone. Higher hardness and fluoride in groundwater were mainly observed in the dry zone. The concentrations of trace elements such as Cd, Pb, Cu, and Cr of all the samples were lower than the World Health Organization guideline values, while some the samples had higher As and Al concentrations above the guideline values. Principal component analysis identified four components that explained 73.2% of the total data variance, and the first component with high loadings of NO<sub>3</sub><sup>−</sup>, hardness, As, and Cr suggested the effects of agricultural activities, while other components were primarily attributed to natural sources and processes. Further analyses found that water hardness, fluoride and As concentration had positive correlations with precipitation and negative correlations with air temperature. The concentration of NO<sub>3</sub><sup>−</sup> and water hardness were positively correlated with agricultural lands, while As concentration was positively correlated with unconsolidated sediments. The environmental factors can account for 58% of the spatial variation in the overall groundwater geochemistry indicated by the results of redundancy analysis. The groundwater quality data in this study cannot identify whether groundwater quality is related to the occurrence of CKDu. However, these findings identify the coupled controls of lithology, land use, and climate on groundwater quality in Sri Lanka. Future research should be effectively designed to clarify the synergistic effect of different chemical constituents on CKDu.
|