Computational fluid dynamics derived dataset for evaluation of mixing of a secondary solid phase in a circulating fluidized bed riser

Transient Eulerian simulations of multiphase flow inside a laboratory-scale circulating fluidized bed (CFB) riser were performed with air, bed material, and a secondary solid phase to evaluate the mixing of the secondary solid phase. This simulation data can be applied in model development or for co...

Full description

Bibliographic Details
Main Authors: Markku Nikku, Kari Myöhänen, Jouni Ritvanen, Timo Hyppänen
Format: Article
Language:English
Published: Elsevier 2023-06-01
Series:Data in Brief
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2352340923001579
Description
Summary:Transient Eulerian simulations of multiphase flow inside a laboratory-scale circulating fluidized bed (CFB) riser were performed with air, bed material, and a secondary solid phase to evaluate the mixing of the secondary solid phase. This simulation data can be applied in model development or for computing terms that are commonly used when modeling mixing with simplified models (pseudo-steady state, non-convective models, etc.). The data was produced with transient Eulerian modeling using Ansys Fluent 19.2. The simulations were done with one fluidization velocity and bed material, while the density, particle size, and inlet velocity of the secondary solid phase was varied and 10 simulations per each secondary solid phase case were simulated for 1 s, each simulation having different starting conditions (flow state of the air and bed material) inside the riser. These 10 cases were then averaged to provide an average mixing profile for each secondary solid phase. Both the averaged and un-average data are included. The details of the modeling, averaging, geometry, materials, and cases are described in the open-access publication by Nikku et al. (Chem. Eng. Sci. 269, 118503).
ISSN:2352-3409