Integral Representations of Ratios of the Gauss Hypergeometric Functions with Parameters Shifted by Integers

Given real parameters <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi></mrow></semanti...

Full description

Bibliographic Details
Main Authors: Alexander Dyachenko, Dmitrii Karp
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/20/3903
_version_ 1827649087755780096
author Alexander Dyachenko
Dmitrii Karp
author_facet Alexander Dyachenko
Dmitrii Karp
author_sort Alexander Dyachenko
collection DOAJ
description Given real parameters <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi></mrow></semantics></math></inline-formula> and integer shifts <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>n</mi><mn>1</mn></msub><mo>,</mo><msub><mi>n</mi><mn>2</mn></msub><mo>,</mo><mi>m</mi></mrow></semantics></math></inline-formula>, we consider the ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow></mrow><mn>2</mn></msub><msub><mi>F</mi><mn>1</mn></msub><mrow><mo>(</mo><mi>a</mi><mo>+</mo><msub><mi>n</mi><mn>1</mn></msub><mo>,</mo><mi>b</mi><mo>+</mo><msub><mi>n</mi><mn>2</mn></msub><mo>;</mo><mi>c</mi><mo>+</mo><mi>m</mi><mo>;</mo><mi>z</mi><mo>)</mo></mrow><mo>/</mo><msub><mrow></mrow><mn>2</mn></msub><msub><mi>F</mi><mn>1</mn></msub><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>;</mo><mi>c</mi><mo>;</mo><mi>z</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of the Gauss hypergeometric functions. We find a formula for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Im</mi><mi>R</mi><mo>(</mo><mi>x</mi><mo>±</mo><mi>i</mi><mn>0</mn><mo>)</mo></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula> in terms of real hypergeometric polynomial <i>P</i>, beta density and the absolute value of the Gauss hypergeometric function. This allows us to construct explicit integral representations for <i>R</i> when the asymptotic behaviour at unity is mild and the denominator does not vanish. The results are illustrated with a large number of examples.
first_indexed 2024-03-09T19:52:00Z
format Article
id doaj.art-35db748bc3dd46ba8da884253a8a56d8
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T19:52:00Z
publishDate 2022-10-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-35db748bc3dd46ba8da884253a8a56d82023-11-24T01:08:17ZengMDPI AGMathematics2227-73902022-10-011020390310.3390/math10203903Integral Representations of Ratios of the Gauss Hypergeometric Functions with Parameters Shifted by IntegersAlexander Dyachenko0Dmitrii Karp1Keldysh Institute of Applied Mathematics, 125047 Moscow, RussiaDepartment of Mathematics, Holon Institute of Technology, Holon 5810201, IsraelGiven real parameters <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi></mrow></semantics></math></inline-formula> and integer shifts <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>n</mi><mn>1</mn></msub><mo>,</mo><msub><mi>n</mi><mn>2</mn></msub><mo>,</mo><mi>m</mi></mrow></semantics></math></inline-formula>, we consider the ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow></mrow><mn>2</mn></msub><msub><mi>F</mi><mn>1</mn></msub><mrow><mo>(</mo><mi>a</mi><mo>+</mo><msub><mi>n</mi><mn>1</mn></msub><mo>,</mo><mi>b</mi><mo>+</mo><msub><mi>n</mi><mn>2</mn></msub><mo>;</mo><mi>c</mi><mo>+</mo><mi>m</mi><mo>;</mo><mi>z</mi><mo>)</mo></mrow><mo>/</mo><msub><mrow></mrow><mn>2</mn></msub><msub><mi>F</mi><mn>1</mn></msub><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>;</mo><mi>c</mi><mo>;</mo><mi>z</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of the Gauss hypergeometric functions. We find a formula for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Im</mi><mi>R</mi><mo>(</mo><mi>x</mi><mo>±</mo><mi>i</mi><mn>0</mn><mo>)</mo></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula> in terms of real hypergeometric polynomial <i>P</i>, beta density and the absolute value of the Gauss hypergeometric function. This allows us to construct explicit integral representations for <i>R</i> when the asymptotic behaviour at unity is mild and the denominator does not vanish. The results are illustrated with a large number of examples.https://www.mdpi.com/2227-7390/10/20/3903gauss hypergeometric functiongauss continued fractionintegral representation
spellingShingle Alexander Dyachenko
Dmitrii Karp
Integral Representations of Ratios of the Gauss Hypergeometric Functions with Parameters Shifted by Integers
Mathematics
gauss hypergeometric function
gauss continued fraction
integral representation
title Integral Representations of Ratios of the Gauss Hypergeometric Functions with Parameters Shifted by Integers
title_full Integral Representations of Ratios of the Gauss Hypergeometric Functions with Parameters Shifted by Integers
title_fullStr Integral Representations of Ratios of the Gauss Hypergeometric Functions with Parameters Shifted by Integers
title_full_unstemmed Integral Representations of Ratios of the Gauss Hypergeometric Functions with Parameters Shifted by Integers
title_short Integral Representations of Ratios of the Gauss Hypergeometric Functions with Parameters Shifted by Integers
title_sort integral representations of ratios of the gauss hypergeometric functions with parameters shifted by integers
topic gauss hypergeometric function
gauss continued fraction
integral representation
url https://www.mdpi.com/2227-7390/10/20/3903
work_keys_str_mv AT alexanderdyachenko integralrepresentationsofratiosofthegausshypergeometricfunctionswithparametersshiftedbyintegers
AT dmitriikarp integralrepresentationsofratiosofthegausshypergeometricfunctionswithparametersshiftedbyintegers