Electrochemical behavior of lansoprazole at a multiwalled carbon nanotubes-ionic liquid modified glassy carbon electrode and its electrochemical determination

The electrochemical behavior of lansoprazole (LNS) has been investigated at a glassy carbon electrode (GCE) and the electrode modified by a gel containing multiwalled carbon nanotubes (MWCNTs) and an room-temperature ionic liquid (RTIL) of 1-Butyl-3-methylimidazolium hexafluorophosphate (BM...

Full description

Bibliographic Details
Main Authors: Liu Li-Hong, You Wei, Zhan Xue-Mei, Gao Zuo-Ning
Format: Article
Language:English
Published: Serbian Chemical Society 2014-01-01
Series:Journal of the Serbian Chemical Society
Subjects:
Online Access:http://www.doiserbia.nb.rs/img/doi/0352-5139/2014/0352-51391300059L.pdf
Description
Summary:The electrochemical behavior of lansoprazole (LNS) has been investigated at a glassy carbon electrode (GCE) and the electrode modified by a gel containing multiwalled carbon nanotubes (MWCNTs) and an room-temperature ionic liquid (RTIL) of 1-Butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) in 0.10 M phosphate buffer solution of pH 6.8. It was found that an irreversible anodic oxidation peak with Epa as 1.060 V appeared at MWCNTs-RTIL/GCE. Under the optimized experimental conditions a linear calibration curve were obtained over the concentration range from 5.0 μM to 0.20 mM by differential pulse voltammetry with the limit of detection (LOD, S/N = 3) as 0.28 μM. In addition, the novel MWCNTs-RTIL/GCE was also characterized by the electrochemical impedance spectroscopy and the proposed method has been successfully applied in the electrochemical quantitative determination of LNS content in commercial tablet samples and the determination results could meet the determination requirement.
ISSN:0352-5139
1820-7421