Binary (<i>k</i>, <i>k</i>)-Designs

We introduce and investigate binary <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula&...

Full description

Bibliographic Details
Main Authors: Todorka Alexandrova, Peter Boyvalenkov, Angel Dimitrov
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/11/1883
_version_ 1827703181601144832
author Todorka Alexandrova
Peter Boyvalenkov
Angel Dimitrov
author_facet Todorka Alexandrova
Peter Boyvalenkov
Angel Dimitrov
author_sort Todorka Alexandrova
collection DOAJ
description We introduce and investigate binary <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula>-designs, a special case of <i>T</i>-designs. Our combinatorial interpretation relates <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula>-designs to the binary orthogonal arrays. We derive a general linear programming bound and propose as a consequence a universal bound on the minimum possible cardinality of <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula>-designs for fixed <i>k</i> and <i>n</i>. Designs which attain our bound are investigated.
first_indexed 2024-03-10T15:12:47Z
format Article
id doaj.art-35eed5979b0d4ecaab964569c3809fcc
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T15:12:47Z
publishDate 2020-10-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-35eed5979b0d4ecaab964569c3809fcc2023-11-20T19:09:45ZengMDPI AGMathematics2227-73902020-10-01811188310.3390/math8111883Binary (<i>k</i>, <i>k</i>)-DesignsTodorka Alexandrova0Peter Boyvalenkov1Angel Dimitrov2Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 8 G Bonchev Str., 1113 Sofia, BulgariaInstitute of Mathematics and Informatics, Bulgarian Academy of Sciences, 8 G Bonchev Str., 1113 Sofia, BulgariaDepartment of Mathematics, Technical University Munich, Boltzmannstrasse 3, Garching b. 85748 Munich, GermanyWe introduce and investigate binary <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula>-designs, a special case of <i>T</i>-designs. Our combinatorial interpretation relates <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula>-designs to the binary orthogonal arrays. We derive a general linear programming bound and propose as a consequence a universal bound on the minimum possible cardinality of <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula>-designs for fixed <i>k</i> and <i>n</i>. Designs which attain our bound are investigated.https://www.mdpi.com/2227-7390/8/11/1883binary (<i>k</i>,<i>k</i>)-designsorthogonal arrayslinear programming
spellingShingle Todorka Alexandrova
Peter Boyvalenkov
Angel Dimitrov
Binary (<i>k</i>, <i>k</i>)-Designs
Mathematics
binary (<i>k</i>,<i>k</i>)-designs
orthogonal arrays
linear programming
title Binary (<i>k</i>, <i>k</i>)-Designs
title_full Binary (<i>k</i>, <i>k</i>)-Designs
title_fullStr Binary (<i>k</i>, <i>k</i>)-Designs
title_full_unstemmed Binary (<i>k</i>, <i>k</i>)-Designs
title_short Binary (<i>k</i>, <i>k</i>)-Designs
title_sort binary i k i i k i designs
topic binary (<i>k</i>,<i>k</i>)-designs
orthogonal arrays
linear programming
url https://www.mdpi.com/2227-7390/8/11/1883
work_keys_str_mv AT todorkaalexandrova binaryikiikidesigns
AT peterboyvalenkov binaryikiikidesigns
AT angeldimitrov binaryikiikidesigns