Summary: | Dyes are one of the most common contaminants in industrial effluents, whose continuous release into the environment has become an increasing global concern. In this work, nanoparticles of zero-valent iron (NZVI) were synthesized using the chemical regeneration method ،and were utilized for the first time as a catalyst in the advanced Sono-Nano-Fenton hybrid method for the decomposition of Reactive Red 198 (RR198). The properties of zero-valent iron nanoparticles were analyzed using SEM and XRD. The effect of pH, initial dye concentration, nanoparticle dosage, zero-valent iron and H2O2 concentration on the decomposition efficiency of Red Reactive 198 was investigated. Comparing the efficiency of Reactivate 198 dye degradation in Sonolysis, Sono-NZVI, Sono-H2O2 and Sono-Nano Fenton processes showed that 97 % efficiency was achieved by the Sono-Nano Fenton process in 60 min. The kinetics of the removal process showed that this process follows pseudo-first-order kinetics and the Langmuir-Hinshelwood model. The results indicate that the effectiveness of the ultrasonic process in removing resistant organic pollutants such as dyes increases tremendously with the synergy of the Fenton process.
|