Degradation of reactive red 198 dye from aqueous solutions by combined technology advanced sonofenton with zero valent iron: Characteristics/ effect of parameters/kinetic studies

Dyes are one of the most common contaminants in industrial effluents, whose continuous release into the environment has become an increasing global concern. In this work, nanoparticles of zero-valent iron (NZVI) were synthesized using the chemical regeneration method ،and were utilized for the first...

Full description

Bibliographic Details
Main Authors: Hossein Kamani, Mehrnaz Hosseinzehi, Mehdi Ghayebzadeh, Ali Azari, Seyed Davoud Ashrafi, Hossein Abdipour
Format: Article
Language:English
Published: Elsevier 2024-01-01
Series:Heliyon
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2405844023108759
Description
Summary:Dyes are one of the most common contaminants in industrial effluents, whose continuous release into the environment has become an increasing global concern. In this work, nanoparticles of zero-valent iron (NZVI) were synthesized using the chemical regeneration method ،and were utilized for the first time as a catalyst in the advanced Sono-Nano-Fenton hybrid method for the decomposition of Reactive Red 198 (RR198). The properties of zero-valent iron nanoparticles were analyzed using SEM and XRD. The effect of pH, initial dye concentration, nanoparticle dosage, zero-valent iron and H2O2 concentration on the decomposition efficiency of Red Reactive 198 was investigated. Comparing the efficiency of Reactivate 198 dye degradation in Sonolysis, Sono-NZVI, Sono-H2O2 and Sono-Nano Fenton processes showed that 97 % efficiency was achieved by the Sono-Nano Fenton process in 60 min. The kinetics of the removal process showed that this process follows pseudo-first-order kinetics and the Langmuir-Hinshelwood model. The results indicate that the effectiveness of the ultrasonic process in removing resistant organic pollutants such as dyes increases tremendously with the synergy of the Fenton process.
ISSN:2405-8440