Carbon Nitride Materials as Efficient Catalyst Supports for Proton Exchange Membrane Water Electrolyzers

Carbon nitride materials with graphitic to polymeric structures (gCNH) were investigated as catalyst supports for the proton exchange membrane (PEM) water electrolyzers using IrO2 nanoparticles as oxygen evolution electrocatalyst. Here, the performance of IrO2 nanoparticles formed and deposited in s...

Full description

Bibliographic Details
Main Authors: Ana Belen Jorge, Ishanka Dedigama, Thomas S. Miller, Paul Shearing, Daniel J. L. Brett, Paul F. McMillan
Format: Article
Language:English
Published: MDPI AG 2018-06-01
Series:Nanomaterials
Subjects:
Online Access:http://www.mdpi.com/2079-4991/8/6/432
Description
Summary:Carbon nitride materials with graphitic to polymeric structures (gCNH) were investigated as catalyst supports for the proton exchange membrane (PEM) water electrolyzers using IrO2 nanoparticles as oxygen evolution electrocatalyst. Here, the performance of IrO2 nanoparticles formed and deposited in situ onto carbon nitride support for PEM water electrolysis was explored based on previous preliminary studies conducted in related systems. The results revealed that this preparation route catalyzed the decomposition of the carbon nitride to form a material with much lower N content. This resulted in a significant enhancement of the performance of the gCNH-IrO2 (or N-doped C-IrO2) electrocatalyst that was likely attributed to higher electrical conductivity of the N-doped carbon support.
ISSN:2079-4991